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The Meese–Rogoff puzzle, one of the well-known puzzles in inter-
national economics, concerns the weak relationship between
nominal exchange rates and market fundamentals. The purpose of
this paper is to show that market fundamentals do in fact matter in
forecasting nominal exchange rates. In particular, we emphasize the
importance of the Harrod–Balassa–Samuelson effect in modeling
deviations from purchasing power parity. Based on the post-Bretton
Woods period, we provide solid out-of-sample evidence that rejects
the random walk forecast model at medium-term and long-term
forecast horizons. We also find mild evidence for out-of-sample
predictability of nominal exchange rates over the short term.
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1. Introduction

Since the publication of the seminal paper by Meese and Rogoff (1983), the predictability of
exchange rates has been the subject of an ongoing scholarly debate in empirical international finance
and has inspired a large volume of papers over the past two decades. Meese and Rogoff (1983) compare
the predictive ability of a variety of exchange rate models and conclude that no existing structural
exchange rate models can reliably beat random walks at short- or medium-term forecast horizons in
out-of-sample forecast contests. Their finding is robust to assumptions of different fundamentals such
as purchasing power parity (PPP) and uncovered interest rate parity, as well as to the use of the realized
value of fundamentals in the forecast period and is now known as the Meese–Rogoff Puzzle. This
puzzle is also sometimes referred to as the exchange rate disconnect puzzle (Obstfeld and Rogoff,
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2000). Meese and Rogoff’s findings are quite striking since a random walk model is not embedded
within any economic wisdom or theory. The goals of research on exchange rate predictability over the
past two decades have been to uncover the reasons which explain the Meese–Rogoff puzzle and to
provide evidence which rejects the random walk forecast model.

A number of authors have found evidence which beats random walk forecasts in out-of-sample
contests (e.g. Chinn and Meese, 1995; Mark, 1995; MacDonald and Marsh, 1997). The empirical
procedure and the robustness of results in the previously mentioned literature have been challenged
by a number of authors (e.g. Cheung et al., 2005; Kilian, 1999; Berkowitz and Giorgianni, 2001; Berben
and van Dijik, 1998; Rossi, 2005). Recently several authors have applied the panel approach to show
evidence of co-integration between exchange rates and fundamentals and then have provided
evidence which beats random walk forecasts (e.g. Mark and Sul, 2001; Groen, 2000). However, these
articles fail to examine the significance of deviations between two forecast errors.

One possible explanation for the Meese–Rogoff puzzle is that the linear forecasting model fails to
capture important non-linearities in the data. However, a number of authors have found that allowing for
regime switching in exchange rate models does not improve the out-of-sample predictability of the
models (e.g. Engel and Hamilton,1990; Engel,1994). Other forms of non-linearity have also been found to
be largely unimportant for exchange rates (e.g. Diebold and Nason, 1990; Meese and Rose, 1991). Recent
empirical work has supported non-linear, mean-reverting adjustment of real exchange rates and has
shown that the exponential smooth transition autoregressive (ESTAR) model provides a parsimonious fit
to the data (e.g. Michael et al., 1997; Taylor et al., 2001; Taylor and Peel, 2000). Given the fact that real
exchange rates follow an ESTAR process, Kilian and Taylor (2003) provide in-sample evidence to beat the
random walk forecast at horizons of 2–3 years, but their out-of-sample evidence is fairly weak. Based on
simulation results, Kilian and Taylor (2003) argue that the reason for the poor out-of-sample predict-
ability of their model may be due to the short sample period available for empirical analysis.

Most existing literature which applies the ESTAR model to describe real exchange rate dynamics
assumes that the long-run equilibrium of real exchange rates is time invariant and hence ignores the
effects of real factors on the equilibrium of real exchange rates. Several articles argue that productivity
differentials between countries affect real exchange rates (e.g. Harrod, 1939; Balassa, 1964; Samuelson,
1964). The Harrod–Balassa–Samuelson (HBS) effect suggests that, under some assumptions, fast growing
economies will experience a rising relative price of non-tradables and hence a real appreciation over
time. In this case, deviations from PPP will revert to an equilibrium trend instead of a constant mean
implying that the real exchange rate would exhibit a trend behavior if one takes the Harrod–Balassa–
Samuelson (HBS) effects into account.1 Based on the idea of differential productivity growth in tradables
and non-tradables, Obstfeld (1993) develops a simple stochastic model in which real exchange rates
contain a pronounced deterministic trend. Kilian and Taylor (2003) argue that the HBS effect is signif-
icant when long historical data are used, but may not be significant in the shorter post-Bretton Woods
period. Their arguments are also underscored by recent empirical findings with long historical data (e.g.
Lothian, 1990; Cuddington and Liang, 2000; Lothian and Taylor, 2000, 2008; Taylor, 2002; Peel and
Venetis, 2003; Taylor and Taylor, 2004). However, Bergin et al. (2006) point out that ‘‘the HBS effect has
not always been a fact of economic life, and appears to be a phenomenon of only the postwar period.’’
Their empirical evidence reveals that the effect virtually vanishes from the data if one looks back fifty
years or more. Several recent studies also point out the significance of the HBS effect on equilibrium real
exchange rates over the post-Bretton Woods period, which indicates the significance of the HBS effect
even in relatively short spans of data (Paya et al., 2003; Paya and Peel, 2003; Sollis, 2005).2
1 There are a number of papers pointing out the limitations of the theory pronounced by Harrod–Balassa–Samuelson.
Notwithstanding these limitations, the theory is useful in explaining long-run trend deviations from PPP. Asea and Corden
(1994) provide an interesting overview on the Harrod–Balassa–Samuelson theory.

2 Sollis (2005) finds that real exchange rates for most industrialized countries are stationary around a gradually changing
deterministic trend function. Paya et al. (2003) adopt an ESTAR model with a non-constant equilibrium to describe the
dynamics of real exchange rates within the European Monetary System. Both deterministic trends and relative price of
non-tradables are applied to proxy for the HBS effect. Paya and Peel (2003) find that the estimated half-life of the dollar–yen
real exchange rate is less than 2 years based on a non-linear model which incorporates a deterministic trend to approximate the
equilibrium level.
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If the HBS effect is significant and is neglected in an empirical exchange rate model, then
the estimation would suffer from omitted-variable bias, which could in turn result in the failure of the
model in its out-of-sample predictability. The purpose of this paper is two-fold. First, we combine the
non-linear adjustment of real exchange rates and the HBS effect in a model and then apply it to address
the issue of nominal exchange rate predictability. Second, we investigate the significance of the HBS
effect in enhancing exchange rate forecasts by examining whether the failure to reject the random walk
forecast as observed in most existing literature can be explained solely by the restriction of short
sample period.

Using the data over the post-Bretton Woods period for several industrialized countries, we obtained
the following significant findings. First, our model fits the data reasonably well and shows that real
effects (such as the HBS effect) on the equilibrium real exchange rate are important even in relatively
short spans of data. Second, we provide strong out-of-sample evidence which rejects the random walk
forecast of nominal exchange rates at horizons of 2–4 years. We also find mild evidence for out-of-
sample predictability of nominal exchange rates when forecast horizons are less than one year. These
results are robust to several newly developed statistical tests, to different sample periods and to
different initial windows of estimation. Our findings are illuminating since they indicate that taking the
HBS effect into account in an ESTAR model can help to strengthen the recursive out-of-sample
predictability of the long-horizon regression equation.3 Using a less parsimonious model we obtain
evidence of out-of-sample predictability. To the best of our knowledge, our paper is the first paper that
provides solid out-of-sample evidence to reject random walk forecasts at short-term, medium-term
and long forecast horizons.4

Third, simulation results point out that our bootstrap tests have correct size and good power
given the modified ESTAR dynamics of real exchange rates. There is no indication that the
power of bootstrap tests increases with forecast horizons. The contribution of the paper is to
complement the existing literature by providing new out-of-sample evidence on the predict-
ability of nominal exchange rates, which enriches our understanding of the Messe–Rogoff
puzzle.

The article proceeds as follows. Section 2 provides a brief discussion of the HBS effect and several
issues in its empirical application. Section 3 describes the estimation results of our model. Section 4
offers the bootstrap tests provided by Kilian (1999) and Kilian and Taylor (2003) given the modified
ESTAR dynamics of real exchange rates. The size and power analysis of the bootstrap tests are given in
Section 5. Section 6 concludes our discussion.
2. The Harrod–Balassa–Samuelson effect

The classical model of the HBS effect implies that the relative price of non-tradable goods in terms of
tradable goods (or real exchange rates) is determined entirely by the production technology. The HBS
effect relies on the following four assumptions. First, there are two symmetric countries in the world
and each country has two, traded and non-traded, sectors. Both factor and final goods markets are
perfectly competitive. Second, production takes place under constant returns to scale. Third, capital is
perfectly mobile internationally. Finally, labor is internationally immobile but mobile between the
tradable and non-tradable sectors.

Under these assumptions, one can derive the following equation for real exchange rates:

z ¼ ð1� qÞ
�
p
�
a�T � aT

�
�
�
a�N � aN

�
þ b
�
;

where z, aN (aT), q are the real exchange rate, the productivity in the non-tradable (tradable) sector, and
3 In the case of recursive forecasts, we use all the data to determine the model specification and then divide the data sample
to generate forecasts.

4 There are several papers providing out-of-sample evidence to reject random walk forecasts, which either fail to examine
the statistical significance of the difference between two forecast errors (Mark and Sul, 2001) or fail to construct the finite
sample distribution of the DM statistic (Chinn and Meese, 1995; MacDonald and Marsh, 1997; Clarida et al., 2003) or fail to beat
random walk forecasts when forecast horizons are short or medium term (Mark, 1995).
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the weight of the traded good price in the price index, respectively.5 b is a constant, p is a parameter,
and the superscripted ‘*’ indicates a foreign variable. Based on the above equation, it can be shown that
the relative price of non-traded goods depends only on the technology of traded and non-traded
sectors, and a positive productivity shock to the domestic traded sector leads to a real appreciation of
domestic currency. This explains why rich countries (or countries with a relatively high level of
productivity) will tend to have a higher exchange rate-adjusted price level on average.

The empirical evidence of the HBS effect provides mixed results (see, e.g., the recent survey studies
by Froot and Rogoff, 1995 and Sarno and Taylor, 2002). Bergin et al. (2006) point out that the HBS effect
virtually disappears if we look back fifty years or more. However, several articles, based on OECD
countries over the period after 1950, provide only weak evidence of the HBS effect (Froot and Rogoff,
1991; Asea and Mendoza, 1994; Fitzgerald, 2003). The conventional explanation of the previous
findings is that since the HBS effect relies upon relative productivity differentials, it would apply better
to price differentials between developed and developing countries rather than to those between
developed countries. Recently, Bergin et al. (2006) utilize a model with a continuum of goods
differentiated by productivity, monopolistic competition, transaction costs and endogenous tradability
to examine the stylized fact of the HBS effect.6 Their model implies that the HBS effect should be more
noticeable even if countries have only a small gap in their GDPs. In addition, some articles also support
the significance of the HBS effect in OECD countries during the period after 1973 (Paya and Peel, 2003;
Paya et al., 2003; Sollis, 2005). This evidence justifies our empirical analysis based on major
industrialized countries during the post-Bretton Woods period.

Empirically, a common, straightforward strategy to model the impact of the HBS effect is to allow for
a linear, deterministic trend in a real exchange rate process. However, the linear trend strategy is not
theoretically supported by Bergin et al. (2006). They point out that the innovation of endogenous
tradability plus the heterogeneous productivity growth allows us to alter the impact of the single shock
process resulting in a non-linear effect on real exchange rates. Moreover, Lothian and Taylor
(2000, 2008) point out that a cubic trend specification is appropriate for the real sterling–dollar rates if
the time trend proxies for the HBS effect. This leads us to speculate upon the significance of non-linear
trends in capturing the HBS effect. In this paper the impact of the HBS effect on real exchange rates is
modeled with a non-linear deterministic trend.
3. The estimation of the ESTAR model

To combine the HBS effect and the non-linear ESTAR dynamics of real exchange rates into a model,
we specify an ESTAR model with a non-constant equilibrium for the real exchange rate. Let st, pt, and pt*

be the logarithm of the spot nominal exchange rates (US dollar per foreign currency), domestic (US)
and foreign consumer price indices, respectively, and let fthpt � p�t denote the PPP fundamental. The
real exchange rate is defined as the deviation of the nominal exchange rate from relative prices (the PPP
fundamental). Hence zt¼ st� ft is the real exchange rate. Following Kilian and Taylor (2003), we apply
an ESTAR(2) model to describe its non-linear dynamics:

zt ¼ gt þ ½a1ðzt�1 � gt�1Þ þ ð1� a1Þðzt�2 � gt�2Þ�F½zt�d;g; gt�d� þ ut ; (1)

Fðzt�d;g; gt�dÞ ¼ exp
h
gðzt�d � gt�dÞ2

i
; utwi:i:d:

�
0; s2

�
;

where, gt denotes the equilibrium of the real exchange rate. If one neglects the HBS effect, then gt is
time invariant and hence assumed to be a constant (Kilian and Taylor, 2003); otherwise, gt is time
varying and assumed to be a polynomial up to a cubic trend: gt ¼ a0 þ a1t þ a2t2 þ a3t3. The inclusion
5 A detailed derivation and discussion of the HBS effect can be found in Balassa (1964), Samuelson (1964), Mark (2001) and
Lothian and Taylor (2008).

6 Let’s assume that the pre-condition of the HBS effect is that technological shocks hit traded sectors. Suppose shocks hit
non-traded sectors initially, then those which receive positive technology shocks and pay for transaction costs become traded
sectors, which meets the pre-condition of the HBS effect and the HBS effect arises endogenously.
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of a non-linear deterministic trend is crucial since it not only agrees with recent arguments by Bergin
et al. (2006) and Lothian and Taylor (2000, 2008), but also allows empirical results from our model to
have a straightforward comparison with those found in Kilian and Taylor (2003).

The term zt� gt can be viewed as short-run fluctuations of the real exchange rate around its long-
run equilibrium path, gt. The transition function, F½zt�d;g; gt�d�, is a function of the lagged real
exchange rate and its lagged long-run equilibrium, which captures the non-linearity of the model. The
parameter g (<0) denotes the speed of transition between regimes and d is the delay lag.7

Given the exponential transition function, F is bounded by zero and one, and the value of F is close to
one when the deviation between zt�d and gt�d is small. In this case, the real exchange rate is highly
persistent. As departures from equilibrium increase, F moves toward zero and hence real exchange
rates follow a stationary AR(2) process.

Another popular model for capturing the non-linearity of real exchange rates is the regime
switching model that allows for occasional discrete changes in exchange rate behavior. Spurred by
Hamilton (1989), the Markov switching model is widely applied to model exchange rates (Bergman and
Hansson, 2005; Siddique and Sweeney, 1998; Engel, 1994; Engel and Hamilton, 1990).8 In these models,
the number of parameters to be estimated grows rapidly with the number of real exchange rate
regimes. As a result, usually only two or three regimes are allowed, which is due to the fact that
estimating many parameters implies a lower power.9 Cheung and Erlandsson (2005) demonstrate that
data frequency and sample length are crucial for determining the number of regimes.10 The estimation
of Markov switching models may be spurious without a formal test for the existence of multiple
regimes. The ESTAR model allows a smooth transition between regimes so that there can be
a continuum of states between regimes. This specification can be thought of as a model in the spirit of
Markov switching where the probability of switching between regimes is a function of an observed
variable instead of an unobserved state variable. The ESTAR model provides a flexible approach to allow
for regime switching and has the advantage of simplicity in estimation, and hence is appealing in
dealing with the dynamics of financial markets. Recently, there have been a number of articles which
lend support to the appropriateness of the ESTAR model in modeling real exchange rate dynamics
(Taylor et al., 2001; Michael et al., 1997).

The quarterly data of the consumer price index and nominal exchange rate for Germany (GER),
France (FRA), Italy (ITA), Japan (JAP), Canada (CAN), Switzerland (SWI), and the United Kingdom (UK)
over the period of the first quarter of 1973 to the last quarter of 1998 were obtained from IMF’s
International Financial Statistics. The data frequency and sample period in our empirical analysis are
the same as those in Kilian and Taylor (2003).

The specification of the trend for each country is determined by sequentially testing the significance
of the high-order trend term in the model. In other words, we first include t, t2, and t3 in the model and
then estimate the model with the method of non-linear least squares. If the coefficient of t3 is
significant, then we report our estimation results; otherwise, we exclude the t3 term from the trend
function and then re-estimate the model with t and t2 in the trend function. If there is no evidence for
including a trend term in the model, we then assume a time invariant mean in our ESTAR model. The
lag order d in the model is based on the model that works well in terms of goodness of fit, statistical
significance of parameters, and diagnostic tests of residuals. Based on the above sequential strategy, we
adopt a linear trend function for JAP, a quadratic trend function for GER and FRA, a cubic trend function
7 If the transition parameter equals zero, then the model degenerates to a linear unit-root process. Hence, testing the
significance of the transition parameter is equivalent to testing the hypothesis that the real exchange rate follows a linear
unit-root process against the alternative of a mean-reverting ESTAR process.

8 On the other hand, several authors point out that Markov switching models for exchange rates are unstable over time or the
forecast performance of the models is sensitive to misclassification of regimes (Marsh, 2000; Dacco and Satchell, 1999) and
implies that Markov switching models are not suitable for forecasting exchange rates.

9 One reason for the absence of a formal test for the number of regimes results from the fact that the commonly used test
statistics do not have their usual asymptotic distributions (Cheung and Erlandsson, 2005).

10 Cheung and Erlandsson (2005) present a systematic and extensive empirical study on the presence of Markov switching
dynamics in three dollar-based exchange rates and find that monthly data instead of quarterly data offer unambiguous
evidence of the presence of Markov switching dynamics.
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for CAN and ITA, and a constant mean for UK and SWI. The lag order, d, is set to be five for JAP, GER, UK,
SWI, and FRA, and four for ITA, and CAN.

Paya and Peel (2003) point out that the asymptotic distribution of trend coefficients in an ESTAR
model is non-standard; we, therefore, construct a finite sample distribution of t-statistic through
bootstrap based on their method.11 Estimation results from the best fitting model are reported in
Table 1, indicating that the estimated coefficients are all significant, and that the model fits the data
reasonably well for all countries. Rows 3–5 of Table 1 report the t-statistics of trend coefficients and
their p-values constructed through bootstrap, which reveals the significance of the trend coefficient at
the 10% level in different countries except for UK and SWI.

Conventional wisdom indicates that the economic model at the heart of the HBS effect would
apply better to developing economies instead of developed economies. It is interesting to find that
the coefficients in the trend function are significant at conventional levels in five out of seven
industrialized countries indicating that the HBS effect is significant in explaining the movement of
real exchange rates. In addition, results from Table 1 indicate significant non-linear trend
movements in real exchange rates between the dollar and the currencies of major industrial
countries (except for JAP, UK and SWI). These findings are interesting since they support the
contention that the HBS effect could be significant in major industrialized countries and imply
that the relative productivity differentials between the US and other major industrialized
countries vary over time.

After comparing the corresponding trend coefficients for those countries that have a similar trend
pattern, we find that their absolute values are similar to each other. This indicates that the impact of the
HBS effect on real exchange rates (captured by trend terms) is similar for the countries in our sample.
These countries are all developed countries and have relatively small GDP gaps between each other. It
is therefore reasonable to find a similar impact of the HBS effect on real exchange rates. In addition, the
intercept of the trend function differs across countries indicating initial heterogeneous technology
among them.

It is worth noting that the asymptotic distribution for the t-statistic of the transition parameter
(g¼ 0) is not conventional as pointed out by Taylor and Peel (2000). We therefore construct the
empirical marginal significance levels for the transition parameter through a non-parametric bootstrap
method under the null hypothesis of a unit-root AR(2) process (AR(3) process for UK) with either
a linear, a non-linear or no trend.12 Based on the bootstrapped critical values, we reject the hypothesis
that the transitional parameter is zero for all countries which indicates the existence of a non-linear
adjustment of real exchange rates. As for residual diagnostics, there is no serial correlation and
autoregressive conditional heteroscedasticity (ARCH) in residuals at the 5% level as indicated by Q and
LM statistics, and Q2 and ARCH statistics, respectively.13 There is also no evidence of a misspecification
of the model in estimated residuals at the conventional level of significance for all countries as
indicated by the RESET statistic.14 Overall, our findings support the appropriateness of an ESTAR
model with the HBS effect in describing the dynamics of real exchange rates for all countries except
UK and SWI.15
11 The data-generating process under the null hypothesis is the ESTAR model without trends, where the parameters of the
process are taken from Table 1 with the trend coefficient being set at zero. The empirical significance levels were based on 5000
simulations of length 204, from which the first 100 were in each case discarded (leaving 104 data points, corresponding to the
size of our data set). At each replication an ESTAR equation with trends was estimated for each artificial data set.

12 Based upon the findings in Table 1, we adopt a linear trend function for JAP, a quadratic trend function for GER and FRA,
a cubic trend function for CAN and ITA and a constant mean for UK and SWI.

13 The Q and LM statistics are the Ljung–Box autocorrelation test and the Breusch–Goldfrey test for serial correlation of
residuals. The ARCH statistic is the Lagrange multiplier test proposed by Engle (1982) for the autoregressive conditional het-
eroscedasticity of residuals. The Q2 statistic is the Q statistic of squared residuals that is applied to examine the ARCH effect in
residuals.

14 The RESET statistic is the Ramsey’s regression specification error test.
15 We also plot the actual and simulated real exchange rates for GER, and the figure indicates that simulated real exchange

rates from the fitted ESTAR model reveal not only long swings in real exchange rates, but also short-run volatility. The figure is
not reported here but is available upon request from authors.



Table 1
The estimation of ESTAR models with the HBS effect: 1973Q1–1998Q4.

zt ¼ gt þ ½a1ðzt�1 � gt�1Þ þ a2ðzt�2 � gt�2Þ þ ð1� a1 � a2Þðzt�3 � gt�3Þ�F½zt�d;g; gt�d� þ ut ;

Fðzt�d;g; gt�dÞ ¼ exp
h
gðzt�d � gt�dÞ2

i
; utwi:i:d:

�
0; s2

�
;

gt ¼ a0 þ a1t þ a2t2 þ a3t3

JAP UK GER ITA CAN SWI FRA

a0 �5.20 0.379 �0.223 �7.184 0.109 �0.409 �1.404
(�106.70) (18.16) (�3.14) (�99.10) (3.73) (�14.037) (�26.64)

a1 0.006 – �0.015 �0.023 �0.021 – �0.015
[0.001] [0.021] [0.067] [0.011] [0.003]

a2 – – 1.4� 10�4 5� 10�4 4.4� 10�4 – 1.3� 10�4

[0.018] [0.066] [0.013] [0.006]
a3 – – – �2.5� 10�6 �2.8� 10�6 – –

[0.088] [0.011]
a1 1.120 1.156 1.069 1.153 1.001 1.015 1.126

(10.27) (10.89) (9.68) (10.49) (9.53) (9.796) (10.25)
a2 – �0.334 – – – – –

(�2.13)
g �4.36 �4.49 �5.01 �5.35 �22.89 �2.365 �4.65

[0.04] [0.01] [0.01] [0.05] [0.06] [0.012] [0.01]
Q(12) 0.91 0.37 0.49 0.43 0.20 0.72 0.78
Q2(12) 0.37 0.82 0.84 0.61 0.83 0.86 0.94
LM(1) 0.40 0.09 0.05 0.71 0.66 1.00 0.81
LM(2) 0.64 0.16 0.13 0.24 0.72 0.53 0.94
ARCH(1) 0.43 0.90 0.25 0.55 0.93 0.67 0.69
ARCH(2) 0.71 0.19 0.42 0.62 0.99 0.78 0.90
RESET(1) 0.49 0.15 0.10 0.06 0.67 0.08 0.41
RESET(2) 0.76 0.15 0.21 0.15 0.49 0.15 0.11

Note: The number in a parenthesis (square bracket) under an estimate is its t-statistic (p-value). LM(p) and Q(p) are respectively
the Lagrange multiplier and the Ljung–Box autocorrelation tests for up to a pth-order autocorrelation. They are c2 distributions
with p degrees of freedom. ARCH(p) is a test statistics for up to a pth-order autoregressive conditional heteroscedasticity. It has
c2 distribution with p degrees of freedom. RESET is the Ramsey’s regression specification error test that has an F distribution. The
p-values for the estimated transition parameter, g, are constructed based on a non-parametric bootstrap. The dash, ‘‘–‘‘, indicates
that a statistic is not constructed. The number in boldface indicates significance at the 10% level.
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Based upon previous findings, we examine the possibility of whether or not a model based on PPP
fundamentals rejects the random walk forecast model of nominal exchange rates. Following Kilian and
Taylor (2003), we specify the model for the nominal exchange rate change (Dst) under the hypothesis
that it is unpredictable. The dynamic process of real exchange rates (zt) is described based on the fitted
ESTAR model in Table 1.
4. The bootstrap tests of long-horizon predictability

Given the fact that our model fits the data well, we evaluate the predictive accuracy of the long-
horizon regression equation relative to a random walk model. The long-horizon regression equation is
described as follows:

stþk � st ¼ ak þ bk

�
zt � bgt

�
þ 3tþk; k ¼ 1; 4;8; 12;16; (2)

where bgt is the estimate of gt. The specification in Eq. (2) is different from the conventional long-
horizon regression equation in which zt instead of zt � bgt is used. The reason for using a trend adjusted
series ðzt � bgtÞ is that the long-run equilibrium of real exchange rates is affected by the HBS effect
which is approximated by a non-linear trend. The non-predictability of nominal exchange rates can be
examined by testing the hypothesis of H0: bk¼ 0 versus H1: bk< 0 for a given forecast horizon k. The
estimated residuals from Eq. (2) are serially correlated if k is greater than one. We therefore apply the
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method provided by Newey and West (1987) to construct the autocorrelation consistent estimate of
the covariance matrix.

Following Mark (1995) and Kilian and Taylor (2003), two different truncation lags are used to
construct the Newey–West covariance matrix. One is to arbitrarily set the truncation lag at 20 and the
other is to select the lag order based on Andrews’ (1991) procedure. Corresponding to these two lag
truncations in computing the standard error of the slope coefficient in the long-horizon regression
equation, the t-statistics of the slope coefficient are denoted by t(20) and t(A), respectively. We also
apply a joint test to examine whether the smallest t-ratio among the five horizons, t(j)min¼min{tk(j):
j¼ 20, A; k¼ 1, 4, 8, 12, 16}, is significant.16

To evaluate the out-of-sample predictability of a model based on the PPP fundamental relative to
the random walk with drift forecast model, we obtain a sequence of recursive forecasts from the long-
horizon regression equation and the random walk model, respectively.17, 18 Following Kilian and Taylor
(2003), the first 32 quarters are reserved for estimation, and hence the out-of-sample forecast period
starts from the first quarter in 1981. We then apply the DM statistic provided by Diebold and Mariano
(1995) to examine the null hypothesis of no difference in the accuracy of two competing forecasts.19

Here, we define the loss differential under a given forecast horizon k: dk
t ¼ ðu2

Rt;k � u2
Lt;kÞ, where uLt,k

and uRt,k are date-t forecast errors from the long-horizon regression equation and the random walk
forecast model, respectively. The t-type DM statistic under a given forecast horizon is given as follows:

DMk ¼
dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pbf kð0Þ=Nk
f

q ; (3)

where dk is the average of the loss differentials under a given forecast horizon k, Nf
k is the number of

k-step ahead forecasts, and bf kð0Þ is the Newey–West estimate of the spectral density of the loss
differential function, dt

k at frequency 0. Corresponding to the two lag truncations used in Newey–West
estimate, the DM statistics are denoted by DM(20) and DM(A). Again, a joint test is applied to examine
whether the largest DM statistic among the five horizons, DM(j)max¼max{DMk(j): j¼ 20, A; k¼ 1, 4, 8,
12, 16}, is significant.

The t-type DM test as found in Eq. (3) is designed for forecasts that do not rely on regression
estimates and hence are not subject to parameter estimation error. To account for parameter
estimation uncertainty, Clark and McCracken (2001, 2004) provide the following F-type test to examine
the hypothesis of equal forecast accuracy under a given forecast horizon k:

GMk ¼ Nk
f

dk

MSEk
L

; (4)

where MSEk
L ¼ ðNk

f Þ
�1PNk

f

j¼1
bu2

L;j is the mean squared error from the long-horizon regression equation

under a given forecast horizon k. Gilbert (2001) considers the same statistic in the split-sample context.
16 A detailed description of the joint test can be found in Mark (1995).
17 Kilian (1999) highlights the importance of being careful about the distinction between pure random walk and random walk

with drift hypotheses. Since the null bootstrap model given in Eq. (5) includes a drift in the nominal exchange rate, we therefore
allow a drift in the random walk forecast model.

18 There are two conventional schemes in constructing out-of-sample forecasts. The rolling scheme fixes the estimation
window size and drops distant observations as recent ones are added. The recursive scheme uses all available data. We follow
Mark (1995) and Kilian and Taylor (2003) to construct recursive forecasts based on the long-horizon prediction equation and
random walk with drift, respectively. In other words, we re-estimate Eq. (2) in each rolling sample with expanding length and
then use the updated parameters to predict nominal exchange rates under different forecast horizons. Different out-of-sample
statistics are constructed based on these forecasts.

19 Rossi (2005) points out that the long-horizon regression forecasts are biased by the estimation error when nominal
exchange rates and fundamentals are highly persistent, but not exactly co-integrated and therefore provides a test for equal
accuracy under this case. In our paper the PPP fundamental is adopted and the deviation from the fundamental is the real
exchange rate. We find that the size of the bootstrap test adopted in our paper is accurate even when the real exchange rate is
highly persistent as shown in our simulation results presented in Section 5 of the paper. We therefore do not apply Rossi’s
statistic to investigate the out-of-sample predictability of nominal exchange rates.



J.-L. Wu, Y.-H. Hu / Journal of International Money and Finance 28 (2009) 1045–1063 1053
Inoue and Kilian (2004) refer to Eq. (4) as the Gilbert–McCracken (GM) test statistic. Although both the
GM and DM tests are based on the average loss of differentials, the key difference between these two
tests is that the GM test uses a different normalization designed to account for parameter estimation
uncertainty in the forecast models. Moreover, Clark and McCracken (2004) point out that, based on
a linear structure, the power of the GM test is superior to that of the DM test when two models are
nested. A joint test is also applied to examine whether the largest GM statistic among the five horizons,
GM(j)max¼max{GMk(j): j¼ 20, A; k¼ 1, 4, 8, 12, 16}, is significant.

Recently, Clark and West (2006) point out that under the hypothesis of no predictive ability of
a variable in the alternative model, the mean squared prediction error (MSPE) of the null model (s1

2)
should be smaller than that of the alternative model (s2

2). Therefore they suggest using the MSPE
adjusted series to test the hypothesis of no predictability in nested models. The test examines whether
the adjusted mean squared error difference is zero, which is defined as follows:

MSPEAk ¼ s2
1;k �

�
s2

2;k � adjk

�
;

where s1,k
2 , s2,k

2 and adjk are the sample average of uRt,k
2 , uLt,k

2 and (uLt,k� uRt,k)2, respectively. We then test
whether MSPEA is significantly different from zero. Let’s define:

wtþk ¼ u2
Rt;k �

h
u2

Lt;k �
�
uLt;k � uRt;k

�2
i
:

We regress wtþk on a constant and use the resulting t-statistic (CWk) for a zero coefficient. The
Newey–West method is applied to construct an autocorrelation consistent standard error. A joint test is
also applied to examine whether the largest CW statistic among the five horizons,
CW(j)max¼max{CWk(j): j¼ 20, A; k¼ 1, 4, 8, 12, 16}, is significant.

The least square estimate of bk is biased (Stambaugh, 1986), and the limiting distributions of the DM,
GM and CW statistics are non-standard when models are nested (Clark and McCracken, 2001, 2004;
Clark and West, 2006, 2007).20 We therefore apply the bootstrap strategy provided by Kilian and Taylor
(2003) to simulate the finite sample distribution of the DM, GM and CW statistics.21 Following Kilian
and Taylor (2003), we first generate bootstrapped data using the following restricted data-generating
process (DGP):

Dst � c ¼ 31t ; (5)

zt ¼ gt þ ½a1ðzt�1 � gt�1Þ þ ð1� a1Þðzt�2 � gt�2Þ�exp
h
gðzt�d � gt�dÞ2

i
þ 32t ;

where gt is a trend function that is determined based on the empirical results in Table 1.
The hypothesis of the exchange rate following the process of random walk with drift is imposed in

the DGP. The innovations of the system 3t ¼ ð31t ; 32tÞ0 are assumed to be independently and identically
distributed. The coefficients of a1,g and the estimated coefficients in the trend function are obtained
from Table 1. Second, after generating the bootstrapped data, we estimate Eq. (2) and then construct tk,
GMk, DMk, CWk, tmin, GMmax, DMmax and CWmax statistics, respectively. Finally, repeating the previous
procedures 2000 times, we obtain the empirical distribution for all statistics, respectively.

Fig. 1 reports the marginal significance level (p-values) of all statistics for each country at different
forecast horizons of 1, 4, 8, 12, and 16 quarters under the hypothesis that nominal exchange rates follow
20 The small sample bias of estimates arises from the fact that regressors are highly persistent and their innovations are highly
correlated with return innovations.

21 Clark and West (2007) point out that the limiting distribution of the CW statistic under the null hypothesis is standard
normal when the estimation is performed using a rolling regression. However, the asymptotic distribution needs to be
simulated when the estimation is performed recursively. They suggest that, for recursive specifications, one-tail standard
normal critical values can be applied to test the null hypothesis of equal forecasting power. This is because their simulation
results show that normal standard critical values result in little size distortion. Moreover, their simulation results also show that
the critical values from bootstrap distribution lead to even smaller size distortion. We therefore construct the finite sample
distribution of the CW statistic based on the bootstrap method.
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the process of a random walk with drift. The horizontal line in the figure indicates the nominal
significance level of 10% and any p-value below it indicates the rejection of the random walk hypothesis
at the 10% level of significance. A number on the bar indicates a p-value of a test. The in-sample and
out-of-sample results are reported in the first two and last five columns, respectively. Several inter-
esting findings can be observed in Fig. 1. First, evidence from in-sample test indicates the superior
predictability of the long-horizon regression relative to the random walk model for JAP, GER, CAN and
SWI. Evidence from the joint test also indicates similar findings. Among these four countries, we also
observed that there is a clear pattern showing that the p-value decreases as the forecast horizon
increases. These findings indicate increased in-sample predictability as the forecast horizon increases,
which is consistent with other work (Mark, 1995 and Engel and West, 2005). Engel and West (2005)
point out that the near random walk behavior of the exchange rate is manifest if the discount factor is
close to one and fundamentals follow a unit-root process. Their findings suggest the difficulty of
predicting exchange rates with short horizons.

Second, the p-values from the last five columns of Fig. 1 indicate that the out-of-sample predict-
ability of nominal exchange rates is significant for the countries JAP, UK, GER, CAN, and SWI when
forecast horizons are long (sixteen quarters) or medium term (eight quarters). The out-of-sample
predictability, based on DM and GM statistics, is observed for CAN at all forecast horizons, for JAP, UK
and GER when forecast horizons are not shorter than eight quarters, and for ITA (SWI) when the
forecast horizon is one (eight and twelve) quarter. Based on the CW statistic, we find support for the
out-of-sample predictability for CAN at all forecast horizons, for JAP (SWI) when forecast horizons are
not shorter than eight (twelve) quarters and for GER when the forecast horizon is eight and twelve
quarters. The joint test provides evidence of out-of-sample predictability for JAP, UK, GER and CAN
based on DM and GM statistics, and for JAP, CAN, SWI when the CW statistic is applied. Frankel and
Rose (1995) and Taylor (1995) point out that there is no fundamental-based exchange rate model
available that is capable of beating random walk forecasting model at short term. Our findings of
out-of-sample predictability over short term for CAN are therefore important, which also indicate the
significance of combining both the HBS effect and non-linearity in modeling the dynamics of real
exchange rates. Third, there is no significant difference between in- and out-of-sample evidence of the
predictability of nominal exchange rates, and the pattern of superiority in prediction across forecast
horizons is similar for in-sample and out-of-sample tests.

We are able to reject the random walk forecast for three or four out of seven countries with different
joint tests, but there is no rejection in Kilian and Taylor (2003) with the joint DM test.22 Our findings are
interesting since they point out that the evidence of beating random walk forecasts will be strength-
ened, given the short spans of data, if the HBS effect is allowed for in modeling real exchange rate
dynamics.

Are the previous findings sensitive to the length of the initial estimation window? To address this
issue, we repeat the previous out-of-sample bootstrap tests with four different initial windows: 32, 40,
50 and 60 quarters, and report the results of a joint test in Table 2.23 It is worth noting that the number
of out-of-sample forecasts decreases as the length of initial window increases, which in turn reduces
the power of out-of-sample bootstrap tests. Findings from Table 2 indicate that the random walk
forecasts are rejected by the GM test for JAP at different initial windows, for CAN when the length of the
initial window is 32, 40 and 50 quarters, for SWI when the initial window is 40, 50 and 60, and for GER
with the initial window of 32 and 40 quarters. Therefore, results from the GM test are robust to
different initial windows in general. DM tests reject random walk forecasts for JAP and CAN when the
initial window is 32 and 40 quarters. As for CW tests, the superiority of random walk forecasts was
22 Kilian and Taylor (2003) apply only the DM statistic in their out-of-sample test and find no evidence to reject the random
walk forecasts. We also re-investigate the out-of-sample predictability of nominal exchange rates with DM, GM and CW
statistics based on the Kilian–Taylor model over the same period as in Fig. 1. We find that the hypothesis of non-predictability of
nominal exchange rates is not rejected based on the joint DM test. The hypothesis is rejected only for UK (CAN) with the p-value
of 0.063 (0.063) when the joint GM (CW) test is applied. Empirical results are not reported here but are available upon request
from authors.

23 We report joint statistics in Table 2 to save space. Similar findings are observed based on results from different statistics at
different forecast horizons, which are not reported here but are available upon request from authors.
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Table 2
Bootstrapped p-value for joint statistics with different initial windows: 1973Q1–1998Q4.

IW t(20)min t(A)min DM(20)max DM(A)max GMmax CW(20)max CW(A)max

JAP 32Q 0.003 0.002 0.062 0.039 0.001 0.109 0.077
40Q 0.003 0.002 0.063 0.048 0.001 0.098 0.098
50Q 0.003 0.002 0.114 0.146 0.006 0.155 0.179
60Q 0.003 0.002 0.251 0.257 0.009 0.298 0.353

UK 32Q 0.200 0.212 0.235 0.219 0.058 0.225 0.210
40Q 0.200 0.212 0.248 0.282 0.106 0.254 0.265
50Q 0.200 0.212 0.321 0.406 0.359 0.248 0.286
60Q 0.200 0.212 0.409 0.479 0.455 0.459 0.460

GER 32Q 0.077 0.050 0.223 0.207 0.053 0.222 0.184
40Q 0.077 0.050 0.246 0.238 0.024 0.174 0.139
50Q 0.077 0.050 0.287 0.369 0.342 0.147 0.134
60Q 0.077 0.050 0.269 0.396 0.299 0.155 0.146

ITA 32Q 0.298 0.303 0.280 0.307 0.361 0.408 0.380
40Q 0.298 0.303 0.402 0.415 0.362 0.443 0.402
50Q 0.298 0.303 0.511 0.512 0.523 0.608 0.613
60Q 0.298 0.303 0.340 0.406 0.467 0.385 0.396

CAN 32Q 0.060 0.083 0.064 0.027 0.032 0.059 0.037
40Q 0.060 0.083 0.088 0.058 0.037 0.037 0.026
50Q 0.060 0.083 0.174 0.142 0.060 0.068 0.051
60Q 0.060 0.083 0.443 0.409 0.139 0.309 0.270

SWI 32Q 0.045 0.026 0.214 0.218 0.101 0.159 0.017
40Q 0.045 0.026 0.161 0.151 0.003 0.133 0.079
50Q 0.045 0.026 0.132 0.195 0.036 0.048 0.037
60Q 0.045 0.026 0.212 0.307 0.071 0.153 0.100

FRA 32Q 0.254 0.298 0.476 0.449 0.427 0.484 0.469
40Q 0.254 0.298 0.513 0.519 0.609 0.511 0.474
50Q 0.254 0.298 0.776 0.669 0.691 0.743 0.743
60Q 0.254 0.298 0.481 0.546 0.547 0.479 0.510

Note: IW indicates the length of initial estimation window. 32Q, 40Q, 50Q and 60Q are 32, 40, 50 and 60 quarters, respectively.
t(20) and t(A) are t-statistics with the truncation lag set at 20 and with that determined based on Andrew’s (1991) procedure.
DM, GM and CW indicate Diebold–Mariano, Gilbert–McCracken and Clark–West statistics, respectively. The number in boldface
indicates significance at the 10% level.
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rejected for CAN and SWI (for JAP) when the initial window is 32, 40 and 50 (32 and 40) quarters,
respectively. Among these different out-of-sample tests, the evidence of rejection is stronger based on
the GM test. A reasonable explanation for this finding is that the power of the GM test is higher than
that of DM and CW tests, and hence it is less likely to reject random walk forecasts with DM or CW tests
when the length of initial window increases. The previous conjecture is confirmed as one can see from
the empirical investigation in Section 5.

Bergin et al. (2006) point out that if the trade pattern truly is endogenously determined then it takes
time for the HBS effect to emerge. This indicates that the HBS effect appears to be more significant if we
have longer post war data. To justify their argument, we re-investigated the previous out-of-sample
forecast contest by extending the sample period from the last quarter of 1998 to the second quarter of
2006 for JAP, CAN, SWI, and UK.24 We re-estimated the ESTAR model with the extended sample period
and observed a quadratic trend function for JAP and UK, a cubic trend function for CAN, and a cubic
trend for SWI. These results reveal significant HBS effects in all of the four countries with the extended
sample period supporting the theoretical implication of Bergin et al. (2006).
24 We excluded the Deutschemark–dollar, French franc–dollar and lira–dollar rates from our sample since the German Mark,
French franc and Italian lira went out of circulation due to the introduction of the Euro in January 1999.
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Results of forecast contests based on the above models are reported in Fig. 2.25 Two out of four
countries reject random walk forecasts based on in-sample statistics. The random walk forecasts are
rejected at the 10% level of significance for all four countries when the joint GM test is applied and for
two out of four countries if the joint CW or DM test is applied. In addition, we also find evidence of
rejecting random walk forecasts with different out-of-sample statistics when forecast horizons are
medium term or long. It is interesting to find that the out-of-sample predictability of nominal exchange
rates is observed, based on the GM test, for UK and CAN regardless of forecast horizons when the
sample period is long. As for SWI, we find evidence of rejecting random walk forecasts with different
out-of-sample statistics when forecast horizons are medium term or long. It is interesting to find that
the evidence of out-of-sample predictability of nominal exchange rates under different forecast
horizons is weak for the UK when the sample period is short, but it is strengthened when the sample
period is long. In short, the out-of-sample evidence of beating the random walk forecast model is
strengthened with the extended sample period, which echoes the theoretical implication of Bergin
et al. (2006).

Given the fact that our model beats the random walk model for most countries as indicated by Figs.
1 and 2, it is interesting to ask: Are our findings due to the problem of the size distortion or because of
the high power of bootstrap tests? To address this issue we apply the bootstrap strategy provided by
Kilian and Taylor (2003) to examine the size and power of bootstrap tests.
5. Size and power of bootstrap tests

Since our bootstrap tests reject the random walk forecast model across forecast horizons, espe-
cially for an extended sample, we are interested in whether these are reliable tests. A test is said to
be unreliable if its effective size exceeds its nominal size. Following the strategy provided by Kilian
and Taylor (2003), we impose the hypothesis that nominal exchange rate changes are unpredictable
and then postulate the following data-generating process for the representative country, GER, as
follows:

Dst þ 0:005 ¼ b31t

zt ¼ bgt þ
	

exp


� 5:011

�
zt�5 � bgt�5

�2
��h

1:069
�

zt�1 � bgt�1

�
� 0:069

�
zt�2 � bgt�2

�i
þ b32t ;

bgt ¼ �0:223� 0:015� t þ 1:4� 10�4 � t2;

where the DGP of zt for GER is set to be the same as that in Table 1. Residuals, b3t ¼ ðb31t ;b32tÞ, are
obtained by a random draw with replacement from actual regression residuals. A three-step
procedure is applied to construct the size of in-sample and out-of-sample tests, based on a nominal
10% level of significance. In step 1, we generate artificial data based on the DGP given above by
Monte Carlo simulations. In step 2, based on the simulated data, we construct different test
statistics and bootstrap their finite sample distribution with 2000 replications. In step 3, repeating
the previous procedures 1000 times, we obtain the size of bootstrap tests. A detailed description of
the simulation procedure can be found in Kilian (1999) and Kilian and Taylor (2003). Fig. 3 reports
the effective size of the bootstrap test at the nominal 10% level of significance. The effective size of
all statistics is close to 0.1 at different forecast horizons, implying no significant size distortion for
those countries.

To evaluate the power of the bootstrap tests, we follow the strategy provided by Kilian and Taylor
(2003) in simulating data for the real exchange rates (zt) and the PPP fundamental (ft), which allows us
to construct the nominal exchange rate (st), since st¼ ftþ zt. The DGP of zt for GER is again set to be the
same as that in Table 1, and the three different DGPs for ft are taken from Kilian and Taylor (2003).26
25 Estimation results from the extended sample period are not reported here but are available upon request from authors.
26 Although our sample period is the same as that of Kilian and Taylor (2003), our data version (IFS CD-ROM) is different from

theirs. This is the reason why the estimated coefficients in Dft equations are not the same as those in Kilian and Taylor (2003).
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Fig. 3. Effective sizes of bootstrap tests at the 10% level of significance: Deutschemark to dollar rate, 1973Q1–1998Q4. Note: p-values
are obtained based on 1000 Monte Carlo simulations with 2000 bootstrap replications each.
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DGP1:

Dft ¼ 0:0050þ b31t

zt ¼ bgt þ
	

exp


� 5:011

�
zt�5 � bgt�5

�2
��h

1:069
�

zt�1 � bgt�1

�
� 0:069

�
zt�2 � bgt�2

�i
þ b32t ;

bgt ¼ �0:223� 0:015� t þ 1:4� 10�4 � t2

DGP2:

Dft ¼ 0:0010þ 0:3554Dft�1 � 0:1162Dft�2 þ 0:1938Dft�3 þ 0:3395Dft�4 þ b31t

zt ¼ bgt þ
	

exp


� 5:011

�
zt�5 � bgt�5

�2
��


1:069
�

zt�1 � bgt�1

�
� 0:069

�
zt�2 � bgt�2

��
þ b32t ;

bgt ¼ �0:223� 0:015� t þ 1:4� 10�4 � t2

DGP3:

Dft ¼ 0:0037þ 0:2158Dft�2 þ 0:0191Det�2 þ b31t

zt ¼ bgt þ
	

exp


� 5:011

�
zt�5 � bgt�5

�2
��h

1:069
�

zt�1 � bgt�1

�
� 0:069

�
zt�2 � bgt�2

�i
þ b32t ;

bgt ¼ �0:223� 0:015� t þ 1:4� 10�4 � t2

The residuals for each equation are bootstrapped from actual regression residuals.
Findings from Fig. 4 indicate that the power of the in-sample bootstrap test varies from 0.81 to 1.0

for different data-generating processes. As for the power of out-of-sample bootstrap tests, it varies
from 0.62 to 0.95, 0.79 to 0.99 and 0.53 to 0.99 for the DM, GM and CW tests, respectively.27 Based on
the joint test, we find that the power of GM test is higher than that of DM and CW tests.28 Our finding of
a high power for the GM test (relative to DM test) is consistent with that in Clark and McCracken
(2004). There is no observation that the power of the tests increases with forecast horizons which is
27 It is meaningless to compare the power in Fig. 4 with those of Kilian and Taylor (2003) since our DGPs are different from
theirs.

28 We also allow the sample size to increase from T¼ 104 to T¼ 208 in simulations and find that the power of bootstrap tests
increases with the sample size (results are not reported here, but are available upon request from authors).



Fig. 4. Power of bootstrap tests at the 10% level of significance: 1973Q1–1998Q4.
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consistent with the finding in Berkowitz and Giorgianni (2001). In addition, the power of in-sample
tests is higher than that of out-of-sample tests, given the same test size. This finding is due to the fact
that an out-of-sample analysis based on sample-splitting results in a loss of information, which in turn
leads to lower power in a small sample.

We are also interested in the case where the HBS effect does exist in data but is neglected in
long-horizon regression equation and in bootstrapping the finite sample distribution of in- and out-
of-sample statistics. We re-construct the power of bootstrap tests in this case. Results from the
lower panel of Fig. 4 indicate that the power of in-sample bootstrap tests varies from 0.69 to 0.93
and the power of out-of-sample bootstrap tests varies from 0.24 to 0.51 (0.47 to 0.81) for DGP1 and
DGP3, and from 0.43 to 0.63 (0.71 to 0.86) for DGP2 based on the DM (GM) test. As for the power of
CW test, it varies from 0.55 to 0.82, and the power does not vary significantly across different DGPs.
The power of the GM test is higher than that of the DM and CW tests based on joint tests. However,
we observe that the power of tests increases with forecast horizons in general. The power
comparison between the previous two cases is meaningless since their DGPs are different.
However, it is reasonable to state that, given the small time span of data, the out-of-sample tests
may not achieve reasonably high power if the HBS effect exists in data but is not accounted for in
regression.

6. Conclusion

Although our knowledge on exchange rate behavior has improved during the past two decades,
economists are still puzzled by the failure to beat random walk models in out-of-sample forecasting
contests. Recently, a number of authors have suggested that the adjustment in the real exchange rate is
in fact non-linear. Kilian and Taylor (2003) focus on PPP fundamentals and argue that an ESTAR model
with a constant equilibrium is appropriate in describing real exchange rate dynamics over the period of
post-Bretton Woods for seven major OECD countries. Based on in-sample evidence, Kilian and Taylor
(2003) conclusively beat the random walk forecast model, but their out-of-sample evidence is less than
satisfactory.
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In this paper we incorporate both a non-linear adjustment and HBS effect in a model to re-examine
the predictability of nominal exchange rates wherein we arrive at several conclusions. First, empirical
results have shown that an ESTAR model embodying the HBS effect provides a parsimonious repre-
sentation of real exchange rate data during the recent float. Second, empirical results from in-sample
and out-of-sample tests allow us to beat the random walk forecast model, given the short spans of data,
at short-term, medium-term and long forecast horizons. Moreover, the previous findings are robust to
different statistical tests, sample periods and initial estimation windows. Third, results from
simulations indicate that our bootstrap tests have correct size and good power, and there is no
observation that the power of tests increases with forecast horizons.

Are nominal exchange rates predictable? The recursive out-of-sample evidence from Kilian and
Taylor (2003) does not reject the random walk forecast model. They conclude that ‘‘this stylized
empirical fact appears to be a natural consequence of the small time span of data available for empirical
work.’’ Based on a careful empirical investigation, we provide solid evidence to beat the random walk
forecast model. We argue that, given the short time span of data, combining the HBS effect with the
non-linear adjustments of real exchange rates are useful in providing evidence of nominal exchange
rate predictability. Our empirical findings therefore shed new light on understanding the Meese–
Rogoff puzzle.

Acknowledgements

For helpful comments we appreciate James Lothian (the editor), an anonymous referee, Alan Taylor,
Paul Bergin as well as participants in seminars at UC Davis and National Sun Yat-sen University. Part of
the paper was finished while Wu was visiting at UC Davis where the Institute of Governmental Affairs
and Department of Economics graciously provided him with superior research facilities. Wu is grateful
for financial support from National Science Council in Taiwan.

References

Andrews, D., 1991. Heteroscedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 (3),
817–858.

Asea, P.K., Mendoza, E., 1994. A Balassa–Samuelson model: a general equilibrium appraisal. Review of International Economics
2 (3), 244–267.

Asea, P.K., Corden, W.M., 1994. The Balassa–Samuelson model: an overview. Review of International Economics 2 (3), 191–200.
Balassa, B., 1964. The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy 72 (6), 584–596.
Berben, R.B., van Dijik, D.J., 1998. Does the absence of cointegration explain the typical findings in long horizon regressions.

Report 9814. Econometrics Institute, Erasmus University of Rotterdam.
Bergin, P., Glick, R., Taylor, A., 2006. Productivity, tradability, and the long-run price puzzle. Journal of Monetary Economics

53 (8), 2041–2066.
Bergman, U.M., Hansson, J., 2005. Real exchange rates and switching regimes. Journal of International Money and Finance

24 (1), 121–138.
Berkowitz, J., Giorgianni, L., 2001. Long-horizon exchange rate predictability? Reviews of Economics and Statistics 83 (1), 81–91.
Cheung, Y.W., Erlandsson, U.G., 2005. Exchange rates and Markov switching dynamics. Journal of Business and Economic

Statistics 23 (3), 314–320.
Cheung, Y.-W., Chinn, M.D., Pascual, A.G., 2005. Empirical exchange rate models of the nineties: are they fit to survive? Journal

of International Money and Finance 24 (7), 1150–1175.
Chinn, M., Meese, R., 1995. Banking on currency forecasts: how predictable is change in money? Journal of International

Economics 38 (1–2), 161–178.
Clarida, R.H., Sarno, L., Taylor, M.P., Valente, G., 2003. The out-of-sample success of term structure models as exchange rate

predictors: a step beyond. Journal of International Economics 60 (1), 61–83.
Clark, T.E., McCracken, M.W., 2001. Tests of equal forecast accuracy and encompassing for nested models. Journal of

Econometrics 105 (1), 85–110.
Clark, T.E., McCracken, M.W., 2004. Evaluating long-horizon forecasts. Working Papers: 0302. Department of Economics,

University of Missouri.
Clark, T.E., West, K.D., 2006. Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis.

Journal of Econometrics 135 (1–2), 155–186.
Clark, T.E., West, K.D., 2007. Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics

138 (1), 291–311.
Cuddington, J.T., Liang, H., 2000. Purchasing power parity over two centuries. Journal of International Money and Finance 19 (5),

753–757.
Dacco, R., Satchell, S., 1999. Why do regime-switching models forecast so badly? Journal of Forecasting 18 (1), 1–16.
Diebold, F.X., Nason, J.A., 1990. Nonparametric exchange rate prediction. Journal of International Economics 28 (3–4), 315–332.
Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics 13 (3), 253–262.



J.-L. Wu, Y.-H. Hu / Journal of International Money and Finance 28 (2009) 1045–10631062
Engel, C., 1994. Can the Markov switching model forecast exchange rates? Journal of International Economics 36 (1–2),
151–165.

Engel, C., Hamilton, J.D., 1990. Long swings in the dollar: are they in the data and do markets know it? American Economic
Review 80 (4), 689–713.

Engel, C., West, K.D., 2005. Exchange rates and fundamentals. Journal of Political Economy 113 (3), 485–517.
Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.

Econometrica 50 (4), 987–1007.
Fitzgerald, D., 2003. Terms-of-trade effects, interdependence and cross-country differences in price levels. Working Paper. UC

Santa Cruz.
Frankel, J.A., Rose, A., 1995. Empirical research on nominal exchange rates. In: Grossmann, G., Rogoff, K. (Eds.), Handbook of

International Economics, vol. III. North Holland, Amsterdam, pp. 1689–1729.
Froot, K., Rogoff, K., 1995. Perspectives on PPP and long-run real exchange rates. In: Grossman, G., Rogoff, K. (Eds.), Handbook of

International Economics, vol. III. North Holland, Amsterdam, pp. 1647–1688.
Froot, K., Rogoff, K., 1991. The EMS, the EMU, and the transition to a common currency. In: Fischer, S., Balanchard, O. (Eds.), NBER

Macroeconomics Annual. MIT Press, Cambridge, MA.
Gilbert, S., 2001. Sampling Schemes and Tests of Regression Models. Manuscript. Department of Economics, Southern Illinois

University at Carbondale.
Groen, J.J., 2000. The monetary exchange rate model as a long-run phenomenon. Journal of International Economics 52 (2),

299–319.
Hamilton, J., 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica

57 (2), 357–384.
Harrod, R., 1939. International Economics. Cambridge University Press, Cambridge.
Inoue, A., Kilian, L., 2004. In-sample or out-of-sample tests of predictability: which one should we use? Econometric Review 23

(4), 371–402.
Kilian, L., 1999. Exchange rates and monetary fundamentals: what do we learn from long-horizon regressions? Journal of

Applied Econometrics 14 (5), 491–510.
Kilian, L., Taylor, M.P., 2003. Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International

Economics 60 (1), 85–107.
Lothian, J.R., Taylor, M.P., 2008. Real exchange rates over the past two centuries: how important is the Harrod–Balassa–

Samuelson effect? Economic Journal 118 (532), 1742–1763.
Lothian, J.R., Taylor, M.P., 2000. Purchasing power parity over two centuries: strengthening the case for real exchange rate

stability: a reply to Cuddington and Liang. Journal of International Money and Finance 19 (5), 759–764.
Lothian, J.R., 1990. A century plus of yen exchange rate behavior. Japan and the World Economy 2 (1), 47–70.
MacDonald, R., Marsh, I.W., 1997. On fundamentals and exchange rates: a Casselian perspective. Review of Economics and

Statistics 79 (4), 655–664.
Mark, N.C., 2001. International Macroeconomics and Finance: Theory and Econometric Methods. Blackwell Publishers,

Massachusetts, USA.
Mark, N.C., 1995. Exchange rates and fundamentals: evidence on long-horizon predictability. American Economic Review 85 (1),

201–218.
Mark, N.C., Sul, D., 2001. Nominal exchange rates and monetary fundamentals: evidence from a small post-Bretton Woods

panel. Journal of International Economics 53 (1), 29–52.
Marsh, I.W., 2000. High-frequency Markov-switching models in the foreign exchange market. Journal of Forecasting 19 (2),

123–134.
Meese, R.A., Rose, A.K., 1991. An empirical assessment of non-linearities in models of exchange rate determination. Review of

Economic Studies 58 (3), 603–619.
Meese, R.A., Rogoff, K., 1983. Empirical exchange rate models of seventies: do they fit out-of-sample? Journal of International

Economics 14 (1–2), 3–24.
Michael, P., Nobay, R.A., Peel, D.A., 1997. Transaction costs and nonlinear adjustment in real exchange rates: an empirical

investigation. Journal of Political Economy 105 (4), 862–879.
Newey, W.K., West, K.D., 1987. A simple positive semi-definite heteroscedasticity and autocorrelation consistent covariance

matrix. Econometrica 55 (3), 703–708.
Obstfeld, M., 1993. Model trending real exchange rates. Center for International and Development Economic Research, Working

Paper No. C93–011.
Obstfeld, M., Rogoff, K., 2000. The six major puzzles in international macroeconomics: is there a common cause?. In: NBER

Macroeconomics Annual, vol. 15.
Paya, I., Venetis, I.A., Peel, D.A., 2003. Further evidence on PPP adjustment speeds: the case of effective real exchange rates and

the EMS. Oxford Bulletin of Economics and Statistics 65 (4), 421–437.
Paya, I., Peel, D.A., 2003. Purchasing power parity adjustment speeds in high frequency data when the equilibrium real

exchange rate is proxied by a deterministic trend. Manchester School (Suppl.), 39–53.
Peel, D.A., Venetis, I.A., 2003. Purchasing power parity over two centuries: trends and non-linearity. Applied Economics 35 (5),

609–617.
Rossi, B., 2005. Testing long-horizon predictive ability with high persistence, and the Meese–Rogoff puzzle. International

Economic Review 46 (1), 61–92.
Samuelson, P., 1964. Theoretical notes on trade problem. Reviews of Economics and Statistics 46 (2), 145–154.
Sarno, L., Taylor, M.P., 2002. The Economics of Exchange Rates. Cambridge University Press, Cambridge.
Siddique, A., Sweeney, R.J., 1998. Forecasting real exchange rates. Journal of International Money and Finance 17, 63–70.
Sollis, R., 2005. Evidence on purchasing power parity from univariate models: the case of smooth transition trend stationarity.

Journal of Applied Economics 20 (1), 79–98.
Stambaugh, R.F., 1986. Bias in Regression with Lagged Stochastic Regressors. Mimeo. University of Chicago.
Taylor, A.M., 2002. A century of purchasing power parity. Review of Economics and Statistics 84 (1), 139–150.



J.-L. Wu, Y.-H. Hu / Journal of International Money and Finance 28 (2009) 1045–1063 1063
Taylor, A.M., Taylor, M.P., 2004. The purchasing power parity debate. Journal of Economic Perspective 18 (4), 135–158.
Taylor, M.P., 1995. The economics of exchange rates. Journal of Economic Literature 33 (1), 13–47.
Taylor, M.P., Peel, D.A., Sarno, L., 2001. Nonlinear mean-reversion adjustment in real exchange rates: towards a solution to the

purchasing power parity puzzles. International Economic Reviews 42 (4), 1015–1042.
Taylor, M.P., Peel, D.A., 2000. Nonlinear adjustment, long-run equilibrium and exchange rate fundamentals. Journal of Inter-

national Money and Finance 19 (1), 33–53.


	New evidence on nominal exchange rate predictability
	Introduction
	The Harrod&ndash;Balassa&ndash;Samuelson effect
	The estimation of the ESTAR model
	The bootstrap tests of long-horizon predictability
	Size and power of bootstrap tests
	Conclusion
	Acknowledgements
	References


