Behavior of the Standard Dicky-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis

Paper Presented at

Department of Public Finance, National Chengchi University

03/24/2017

Lixiong Yang School of Management, Lanzhou University, Lanzhou, China

Chingnun Lee Institute of Economics, National Sun Yat-sen University, Kaohsiung, Taiwan

Jen-Je Su Department of Accounting Finance and Economics, Griffith University Brisbane, Australia

Why Unit Root Test is Important?

AR(1) Process: $Y_t = \emptyset Y_{t-1} + \varepsilon_t$.

By Recursive Substitution, We get $Y_{t} = \varepsilon_{t} + \emptyset \varepsilon_{t-1} + \emptyset^{2} \varepsilon_{t-2} + \emptyset^{3} \varepsilon_{t-3} + \cdots$ When $|\emptyset| < 1$ $\Rightarrow \operatorname{Var}(Y_{t}) \rightarrow k$, where k is a finite. When $|\emptyset| = 1$ $\Rightarrow \operatorname{Var}(Y_{t}) \rightarrow \infty$.

Standard Unit Root Test: Dickey-Fuller (1979):

 $Y_t = \alpha + \gamma t + \emptyset Y_{t-1} + \varepsilon_t,$

 $H_0: \phi = 1$ v.s.

 $H_1: \ \emptyset < 1.$

(1)

Standard Dickey-Fuller Unit Root Test is *t*-test statistics on OLS estimation of \emptyset .

Standard Unit Root Test: Dickey-Fuller (1979):

For example in a no constant and no trend model,

$$\check{t} = \frac{(\check{\phi_T} - 1)}{\check{\sigma}_{\check{\phi_T}}} \xrightarrow{L} \frac{1/2 \{ [W(1)]^2 - 1 \}}{\left\{ \int_0^1 [W(r)]^2 dr \right\}^{1/2}} , (\text{Dicky Fuller Distribution})$$

where $\breve{\sigma}_{\breve{\phi}T}^2 = [s_T^2 \div \sum_{t=1}^T Y_{t-1}^2]^{1/2}$ and s_T^2 denote the OLS estimate of the disturbance variance: $s_T^2 = \sum_{t=1}^T (Y_t - \breve{\phi}_T Y_{t-1})^2 / (T-1).$

Standard Unit Root Test: Dickey-Fuller (1979): Dicky Fuller Distribution (with constant and trend)

Chingnun Lee

Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 5/19

Standard Unit Root Test: Dickey-Fuller (1979):

Schwart (1987) and Phillips-Perron (1988) : DF had serious Size Distortion and Lack of Power

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 6/19

Unit Root Tests and Structural Breaks

ONE Exogenous Dummy Variable Structural Break Unit root test: Perron (1989)

$$\psi_{t} = \begin{cases} \alpha_{1} + \gamma t + \emptyset Y_{t-1} + \varepsilon_{t} &, \text{ for } t < T_{0} \\ \alpha_{2} + \gamma t + \emptyset Y_{t-1} + \varepsilon_{t} &, \text{ for } t \ge T_{0} \end{cases}$$

◆ Perron Phenomenon (誤以為是單根, Power問題): For Ø < 1 in (2),

Perron (1989) found that with a significant shift and using standard DF tests one could **rarely reject the unit root** hypothesis, even in cases where we have a stationary process with a shift-mean.

◆ Converse Perron Phenomenon (誤以為不是單根, Size問題): For Ø = 1 in (2),

Leybourn and Newbold (2000) find that if the true generating process is integrated of order one, but with a break, then it is shown that, if the break occurs early in the series, routine application of standard Dickey-Fuller tests can lead to a very serious problem of **spurious rejection of the unit root** null hypothesis.

Unit Root Tests and Structural Breaks

Subsequent Development after Perron (1989).

• Endogenous Structural Breaks:

The main innovation of these papers is to suggest that the date of the break T_0 should be identified endogenously when testing for breaks. Ex: Banerjee, Lumsdaine and Stock (1992), and Zivot and Andrews (1992) etc.

• Multiple break. Ex: Papell and Prodan (2003), and Kapetanois (2005)

Unit Root Tests and Structural Breaks

- Prodan (2008) shows that it can be quite difficult to properly estimate the number and the magnitudes of multiple breaks.
- Unit root with Fourier Change: Instead of adopting dummy variables to capture discrete breaks, several articles develop unit-root tests by applying Gallants (1981) flexible Fourier form to take into account smoothing breaks in the deterministic components (Becker, Enders and Hurn, 2004; Becker, Enders and Lee, 2006; Enders and Lee, 2012a,b; Rodrigues and Taylor, 2012; Lee et al. 2016)

• Fourier Transformation to Approximate Break.

$$d(t) = \beta_0 + \sum_{k=1}^n \beta_{1k} \sin\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^n \beta_{2k} \cos\left(\frac{2\pi kt}{T}\right),$$

where *k* is the frequency parameter.

Unit Root Tests and Structural Breaks

Figure 1. Sharp, ESTAR and LSTAR breaks

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 10/19

Unit Root Tests and Structural Breaks

> Unit root with Fourier Change:

◆ Fourier Dickey-Fuller Unit Root Test. (Enders and Lee, 2012)

$$\begin{split} Y_t &= \alpha + \gamma t + \beta_1 \sin\left(\frac{2\pi kt}{T}\right) + \beta_2 \cos\left(\frac{2\pi kt}{T}\right) + \emptyset Y_{t-1} + \varepsilon_t, \\ H_0 &: \emptyset = 1 \quad \text{v.s.} \\ H_1 &: \emptyset < 1. \end{split}$$

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 11/19

(3)

For $\emptyset = 1$ in (3), the size performance of traditional DF test. That is, If the true DGP is

$$Y_t = \alpha + \gamma t + \beta_1 \sin\left(\frac{2\pi kt}{T}\right) + \beta_2 \cos\left(\frac{2\pi kt}{T}\right) + \emptyset Y_{t-1} + \varepsilon_t, \ \emptyset = 1,$$

But
$$\beta_1 \sin\left(\frac{2\pi kt}{T}\right) + \beta_2 \cos\left(\frac{2\pi kt}{T}\right)$$
 is ignored.

What would happen to traditional DF test?

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 12/19

Main Results:

Mean Case (critical value is -2.88) :

 $t^{DF_{C},B} \rightarrow 0.$

Because -2.88 < 0, Null Hypothesis $\emptyset = 1$ is always accepted.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 13/19

Main Results:

➤ Trend Case (critical value is -3.96) :

$$t^{DF_{t,B}} \rightarrow \frac{\frac{6\kappa_{1}\kappa_{2}}{\pi k\sigma}}{\left(\frac{1}{2}(\kappa_{1}^{2}+\kappa_{2}^{2})-\frac{3\kappa_{1}^{2}}{(\pi k)^{2}}\right)^{1/2}},$$
 (Trend)

 $\kappa_1 * \kappa_2 > 0$, Null Hypothesis $\emptyset = 1$ is always accepted.

 $\kappa_1 * \kappa_2 < 0$ and $k\sigma$ is small, then $t^{DF_t,B}$ is a large negative number, therefore

Null Hypothesis $\emptyset = 1$ is **possible incorrectly rejected**.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 14/19

Main Results:

Figure

Figure (1a). kappa 1=2 and kappa 2=-2

Figure (1b). kappa 1=2 and kappa 2=2

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 15/19

Main Results:

Simulation Confirmations

Trend Case

Table 1

Size of standard DF test with trend when DGP is given as (1) and (2). (Under a fixed $\sigma = 1$)

Т	(κ_1,κ_2)	(0.1,-0.1)	(0.1,0.1)	(0.5,-0.5)	(0.5,0.5)	(1,-1)	(1,1)	(1.5,-1.5)	(1.5,1.5)	(2,-2)	(2,2)
100	k=1	0.043	0.046	0.024	0.001	0.118	0.000	0.439	0.000	0.802	0.000
	k=2	0.048	0.055	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=3	0.052	0.056	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.045	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=5	0.041	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
200	k=1	0.052	0.049	0.022	0.001	0.142	0.000	0.577	0.000	0.936	0.000
	k=2	0.055	0.054	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=3	0.050	0.055	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.046	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-	k=5	0.042	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=1	0.052	0.047	0.013	0.003	0.151	0.000	0.673	0.000	0.979	0.000
500	k=2	0.051	0.052	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=3	0.049	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.045	0.048	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=5	0.042	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Notes: y_t is generated as $(1 - \phi L)(y_t - \alpha(t) - \gamma t) = u_t$, $\alpha(t) = \alpha_0 + \beta_1 \sin(2\pi kt/T) + \beta_2 \cos(2\pi kt/T)$, with $\phi = 1$, $\beta_1 = \kappa_1 \sqrt{T}$, $\beta_2 = \kappa_2 \sqrt{T}$, $\gamma = 1$, $\alpha_0 = 1$ and $u_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ with $\sigma = 1$. Size is computed at the 5% nominal level, based on 2000 replications.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 16/19

Main Results:

Simulation Confirmations

Mean Case

Table 2

Size of standard trend-free DF test when DGP is given as (1) and (2) with $\gamma = 0$. (Under a fixed $\sigma = 1$)

Т	(κ_1,κ_2)	(0.1,-0.1)	(0.1,0.1)	(0.5,-0.5)	(0.5,0.5)	(1,-1)	(1,1)	(1.5,-1.5)	(1.5,1.5)	(2,-2)	(2,2)
100	k=1	0.053	0.043	0.028	0.003	0.022	0.000	0.001	0.000	0.001	0.000
	k=2	0.048	0.037	0.011	0.000	0.001	0.000	0.000	0.000	0.000	0.000
	k=3	0.039	0.040	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.032	0.038	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=5	0.031	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
200	k=1	0.049	0.048	0.034	0.002	0.023	0.000	<mark>0.008</mark>	0.000	0.003	0.000
	k=2	0.041	0.031	0.009	0.000	0.001	0.000	0.000	0.000	0.000	0.000
	k=3	0.038	0.029	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.043	0.034	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=5	0.038	0.033	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	k=1	0.052	0.043	0.049	0.002	0.021	0.000	0.018	0.001	0.008	0.001
500	k=2	0.045	0.028	0.017	0.001	0.007	0.000	0.002	0.000	0.001	0.000
	k=3	0.048	0.030	0.007	0.001	0.000	0.000	0.000	0.000	0.000	0.000
	k=4	0.032	0.028	0.005	0.002	0.000	0.000	0.000	0.000	0.000	0.000
	k=5	0.033	0.032	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Notes: y_t is generated as in Table 1 with $\gamma = 0$. Size is computed at the 5% nominal level, based on 2000 replications.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 17/19

Main Results:

Simulation Confirmations

Trend Case

Table 3

т	(1, 1, 1) = (1, 1)	- 05	- 1	- 15	- 2	- 25
1	$(\kappa_1, \kappa_2) = (1, -1)$	$\delta = 0.3$	$\sigma \equiv 1$	$\sigma = 1.5$	$\sigma \equiv 2$	$\sigma = 2.5$
	k=1	0.813	0.118	0.035	0.030	0.028
	k=2	0.000	0.000	0.000	0.000	0.001
100	k=3	0.000	0.000	0.000	0.000	0.000
	k=4	0.000	0.000	0.000	0.000	0.000
	k=5	0.000	0.000	0.000	0.000	0.000
	k=1	<mark>0.936</mark>	0.142	0.031	0.019	0.022
	k=2	0.000	0.000	0.000	0.000	0.000
200	k=3	0.000	0.000	0.000	0.000	0.000
	k=4	0.000	0.000	0.000	0.000	0.000
	k=5	0.000	0.000	0.000	0.000	0.000
	k=1	0.981	0.151	0.031	0.022	0.021
	k=2	0.000	0.000	0.000	0.000	0.000
500	k=3	0.000	0.000	0.000	0.000	0.000
	k=4	0.000	0.000	0.000	0.000	0.000
	k=5	0.000	0.000	0.000	0.000	0.000

Size of standard DF test with trend when DGP is given as (1) and (2). (Under fixed large $\kappa' s$, $\kappa_1 = 1$, $\kappa_2 = -1$)

Note: y_t is generated as in Table 1 with various σ . Size is computed at the 5% nominal level, based on 2000 replications.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 18/19

Main Results:

➢ Figure

Figure 2. Size of standard DF test with trend when DGP is given as (1) and (2) with $\phi = 1$ and $u_t \sim N(0, 1)$, T = 100.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis ^{19/19}

Main Results:

➢ Figure

Figure 3. Size of standard trend-free DF test when DGP is given as (1) and (2) with $\gamma = 0$, $\phi = 1$ and $u_t \sim N(0, 1)$, T = 100.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 20/19

Conclusion

- The converse Perron phenomenon would possibly occur when there is a Fourier- form break.
 - Assume the null unit-root process is accompanied with a Fourier component. We derive the asymptotic distribution of the DF t-statistic. We find
 - ◆ Ignore the Fourier component will result in non-trivial size distortion
 - ◆ The null hypothesis of unit root can be either over- or under-rejected.
 - The converse Perron phenomenon is likely to occur if a low-frequency Fourier component is ignored and the underlying time series is containing a linear trend with the variance of regression errors is small.

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 21/19

THANK YOU for your PATIENT LISTENING

Chingnun Lee Behavior of the Standard Dickey-Fuller Test When There is a Fourier-Form Break Under the Null Hypothesis 22/19