
Ch. 1 Linear Algebra‡
(October 8, 2018)

Probably the most important problem in mathematics is that of solving a system

of linear equations. Using modern mathematics, it is often possible to take a sophisti-

cated problem and reduce it to a single system of linear equations. Linear algebra and

matrix theory are essentially synonymous terms for the area of mathematics that has

became one of the most useful and pervasive tools in a wide rang of disciplines to solve

a system of linear equations. It is also a subject of great mathematical beauty.

1 Vector Space

The concept of a vector is a very useful one. This utility from two important aspects

of vectors, namely that they engender a highly geometrical insight, which is of course

much to be desired, and that vector notation permits many complicated formulas to

be written in a very compact form. With this economy of notation comes a greater

ease in handling problem.

‡Editorial assistance from Qi Wang, School of Economics and Management, Tongji University,
Shanghai, China for the following 11 Chapters is highly appreciated.
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Ch.1 Linear Algebra 1 VECTOR SPACE

1.1 Vector Space Axiom

A vector space (also called a linear space) is a collection of objects called vectors,

which may be added together and multiplied (“scaled”) by numbers, called scalars

in this context. That is, a vector space (over a field F) is a set V admitting two

“operation”, called multiplication by scalars and addition:

(a). If x ∈ V and α is a scalar, then αx ∈ V .

(b). If x,y ∈ V , then x + y ∈ V ,

They also satisfy the following conditions:

(c). x + y = y + x for any x and y in V .

(d). (x + y) + z = x + (y + z).

(e). There exists an element 0 in V such that x + 0 = x for each x ∈ V .

(f). For each x ∈ V , there exists an element −x ∈ V such that x + (−x) = 0.

(g). α(x + y) = αx + αy for each real number α and any x and y in V .

(h). (α + β)x = αx + βx for any real number α and β and any x ∈ V .

(i). (αβ)x = α(βx) for any real number α and β and any x ∈ V .

(j). 1 · x = x for all x ∈ V . �

Example.
A familiar example of a vector space is the n-dimensional Euclidean space Rn. Here,

addition and multiplication are defined as follows: If (u1, u2, ..., un)′ and (v1, v2, ..., vn)′

are two elements in Rn, then their sum is defined as (u1 +v1, u2 +v2, ..., un +vn)′ which

is also an element of Rn. If α is a scalar, then α(u1, u2, ..., un)′ = (αu1, αu2, ..., αun)′.1�

1Example: The two-dimensional plane is the set of all vectors with two real-valued coordinates.
We label this set R2. It has two important properties.
(a). R2 is closed under scalar multiplication; every scalar multiple of a vector in the plane is also in
the plane.
(b). R2 is closed under addition; the sum of any two vectors is always a vector in the plane.
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Example.
Let V be the set of all polynomials in x of degree less than or equal to k. Then V is

a vector space. Any element in V can be expressed as
∑k

i=0 aix
i, where the ai’s are

scalars. �

1.2 Euclidean Vector Space

Perhaps the most elementary vector is the Euclidean vector space Rn, n = 1, 2, . . . . For

simplicity, let us consider first R2.

Non-zero vector in R2 can be represented geometrically by directed line segments.

Given a nonzero vector x =

[
x1
x2

]
(or x = (x1 x2)) we can associate it with the line

segment in the plane from (0, 0) to (x1, x2). If we equate line segment that have the

same length and direction, x can be represented by any line segment from (a, b) to

(a+ x1, b+ x2). For example, the vector x =

[
2
1

]
in R2 could be represented by the

directed line segment from (2, 2) to (4, 3), or from (−1,−1) to (1, 0).

Definition.

The Euclidean length of a vector x =

[
x1
x2

]
is the length of any directed line segment

representing x. The length of the segment from (0, 0) to (x1, x2) is
√
x21 + x22 (= x′x).

The length is also called the Euclidean norm and is denoted as ‖x‖. �

Two basic operations are defined for vectors, scalar multiplication and addition.

The geometric representation will help us to visualize how the operation of scalar

multiplication and addition work in R2.

(a). Scalar multiplication:

For each vector x =

[
x1
x2

]
and each scalar α, the product αx is defined by

αx =

[
αx1
αx2

]
.
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The set of all possible scalar multiple of x is the line through 0 and x. Any scalar

multiple of x is a segment of this line.

Example.

a =

[
1
2

]
, a∗ = 2a =

[
2
4

]
, a∗∗ = −1

2
a =

[
−1

2

−1

]
.

The vector a∗(= 2a) is in the same direction as a, but its length is two times

that of a. The vector a∗∗(= −1
2
a) has half of length as a but its point in the

opposite direction.

(b). Addition:

The sum of two vectors a and b is a third vector whose coordinates are the sums

of the corresponding coordinates of a and b. For example ,

c = a + b =

[
1
2

]
+

[
2
1

]
=

[
3
3

]
.
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Geometrically, c is obtained by moving in the distance and direction defined by

b from the tip of a or, because addition is commutative, from the tip of b in the

distance and direction of a.

-1

0
-1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

b

a

c

First coordinate

Second coordinate

�

In a similar manner, vectors in R3 can be represented by directed line segments in

a 3-space. Vector in Rn can be views as the coordinates of a point in a n-dimensional

space or as the definition of the line segment connecting the origin and this point.

In general, scalar multiplication and addition in Rn are defined by

αx =


αx1
αx2
.
.
.

αxn

 and x + y =


x1 + y1
x2 + y2

.

.

.
xn + yn


for any x and y ∈ Rn and any scalar α.
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1.3 Linear Combination of Vectors and Basis Vectors

We can combine the two operations “addition” and “scalar multiplication” above as a

whole which is known as a “linear combination”.

Definition.
Let u ∈ V and v ∈ V , the vector w = αu + βv ∈ V is called a linear combination of u

and v, where α and β are scalars. �

Definition.
A set of vectors in a vector space is a basis for that vector space if any vector in the

vector space can be written as a linear combination of them. The number of elements

in this basis is called the dimension of the vector space. �

Result.
Any pair of two dimensional vectors that point in different directions will form a basis

for R2.

Proof.
Consider an arbitrary set of vectors in R2, a,b, and c. If a and b are a basis, we can

find numbers α1 and α2 such that c = α1a + α2b. Let

a =

[
a1
a2

]
, b =

[
b1
b2

]
, and c =

[
c1
c2

]
.

Then

c1 = α1a1 + α2b1,

c2 = α1a2 + α2b2.

The solutions to this pair of equations are

α1 =
b2c1 − b1c2
a1b2 − b1a2

, (1-1)

α2 =
a1c2 − a2c1
a1b2 − b1a2

. (1-2)

This gives a unique solution unless (a1b2 − b1a2) = 0. If (a1b2 − b1a2) = 0, then
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a1/a2 = b1/b2, which means that b is just a multiple of a. This returns us to our

original condition, that a and b point in different direction. The implication is that

if a and b are any pair of vectors for which the denominator in (1-1) and (1-2) is not

zero, then any other vector c can be formed as a unique linear combination of a and b.�

The basis of a vector space is not unique, since any set of vectors that satisfy the

definition will do. But for any particular basis, there is only one linear combination of

them that will produce another particular vector in the vector space.

1.4 Linear Dependence

As the preceding should suggest, k vectors are required to form a basis for Rk. However

it is not every set of k vectors will suffices. As we see, to form a basis we require that

this k vectors to be linearly independent.

Definition.
A sets of vectors is linearly dependent if any one of the vectors in the set can be

written as a linear combination of the others. �

Definition.
The vector v1,v2, ...,vn in a vector space V are said to be linearly independent if

and only if the solution to

c1v1 + c2v2 + ...+ cnvn = 0

is

c1 = c2 = ... = cn = 0.

�
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Example.

The vector

[
1
1

]
and

[
1
2

]
are linear independent, since if

c1

[
1
1

]
+ c2

[
1
2

]
=

[
0
0

]
,

then

c1 + c2 = 0

c1 + 2c2 = 0

and the only solution to this system is c1 = c2 = 0. �

1.5 Subspace

Given a vector space V , it is often possible to form another vector space by taking s

subset S of V and using the operations of V .

Definition.
If S is a nonempty subset of a vector space V , and S satisfies the following conditions:

(a). αx ∈ S, whenever x ∈ S for any scalar α.

(b). x + y ∈ S whenever x ∈ S and y ∈ S, then S is said to be a subspace of V . �

Definition. (Linear Span)

Let u1, u2,..., un be n elements in a vector space V . The collection of all linear combi-

nations of the form
∑n

i=1 αiui, where the αi’s are scalars, is called a linear span of u1,

u2,..., un. �

Example.
Rk = Span(v1, ...,vk) for a basis (v1, ...,vk). �

We now consider what happens to the vector space that is spanned by linearly

dependent vectors.
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Example.

S= Span

[
1
2

]
is a one-dimensional subspace in R2 since α

[
1
2

]
∈ S and

α

[
1
2

]
+ β

[
1
2

]
= (α + β)

[
1
2

]
∈ S. Furthermore, S ⊂ R2. �

Therefore, the space spanned by a set of vectors in Rk has at most k dimensions. If

this space has fewer than k dimensions, it is subspace, or hyperplane. But the impor-

tant point in the preceding discussion is that every set of vectors spans some space; it

may be the entire space in which the vector reside, or some subspace of it.

Example.
In R3, the intersection of two-dimensional subspaces is one-dimensional:
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Exercise 1.
Let S = {(x1, x2, x3)′|x1 = x2}. Show that S is a subspace of R3. �

1.6 Vector Projection

Definition.
The dot product of two vectors, an and bn, is a scalar and is written as

an · bn = a1 × b1 + a2 × b2 + ...+ an × bn
= ‖an‖ × ‖bn‖ × cos(θ)

= bn · an,

where θ is the angle between an and bn. Two vectors an and bn are said to be orthog-

onal if an · bn = 0.2 �

It is apparent that an · an =
∑
a2i = ‖a‖2.

2It is because cos(90◦) = 0.
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Definition.
The vector projection of a vector v on (or onto) a nonzero vector u is the orthogonal

projection of a onto a straight line parallel to u. It is a vector parallel to u, denoted

as Proju(v). �

Result.

Proju(v) =

(
v · u
‖u‖2

)
u. (1-3)

Proof.
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Let Proju(v) = tu. Because (Proju(v)− v) is orthogonal to u,3

(Proju(v)− v) · u = 0.

That is

(tu− v) · u = 0.

Hence t =
(

v·u
‖u‖2

)
, and therefore Proju(v) = tu =

(
v·u
‖u‖2

)
u. �

3In fact, it is −(Proju(v)− v) to be orthogonal to u.
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2 Matrices

2.1 Linear Transformation

Linear mappings from one vector space to another play an important role in mathe-

matics. In the study of vector spaces the most important types of mappings are linear

transformation.

Definition. (Linear Transformation)

Let U and V be two vector spaces. A function L : U → V is called a linear transfor-

mation if

L(α1u1 + α2u2) = α1L(u1) + α2L(u2) (1-4)

for all u1 and u2 in U and any scalars α1 and α2. �

If L is a linear transformation mapping a vector space U into V , it follows from

(1-3) that

L(u1 + u2) = L(u1) + L(u2), (∵ α1 = α2 = 1) (1-5)

and

L(α1u) = α1L(u), (∵ u = u1, α2 = 0). (1-6)

Conversely, if L satisfies (4) and (5), then

L(α1u1 + α2u2) = L(α1u1) + L(α2u2)

= α1L(u1) + α2L(u2).

Thus L is a linear transformation on U if and only if L satisfies (1-4) and (1-5).

Example.
The operator L defined by

L(x) =

(
−x2
x1

)
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is linear, since

L(αx + βy) =

(
−(αx2 + βy2)
αx1 + βy2

)
= α

(
−x2
x1

)
+ β

(
−y2
y1

)
= αL(x) + βL(y).

The operator L has the effect of rotating each vector in R2 by 90◦ in the counterclock-

wise direction. �

Example.
Let T : R2 → R1 be defined as

T (x) = T (x1, x2) = (x21 + x22)
1/2.

Then T is not a linear transformation, since

T (αx) = (α2x21 + α2x22)
1/2 = |α|T (x).

It follows that

αT (x) 6= T (αx)

whenever α < 0 and x 6= 0. Therefore, T is not a linear transformation. �

2.1.1 The Matrix Representation of a Linear Transformation

We will see how any linear operator between finite-dimensional space can be repre-

sented by a matrix now.

Theorem.
If L is a linear operator mapping Rn into Rm, then there is an m × n matrix A such

that

L(x) = Ax
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for each x ∈ Rn. In fact, the jth column vector of A is given by

aj = L(ej) j = 1, 2, ..., n.

Proof.
For j = 1, ..., n define

aj = (a1j, a2j, ..., amj)
′ = L(ej).

Let

A = (aij) = (a1, a2, ..., an).

If

x = x1e1 + x2e2 + · · ·+ xnen

is an arbitrary element of Rn, then

L(x) = x1L(e1) + x2L(e2) + · · ·+ xnL(en)

= x1a1 + x2a2 + · · ·+ xnan

= (a1, a2, ..., an)


x1
x2
.
.
.
xn


= Ax. �

Since the standard basis elements e1, e2, ..., en were used for Rn, we refer A as the

standard matrix representation of L.

Example.
Let L : R3 → R3 be defined as

L(x1, x2, x3) = (x1 − x2, x1 + x3, x3).

r 2018 by Prof. Chingnun Lee 15 Ins.of Economics,NSYSU,Taiwan



Ch.1 Linear Algebra 2 MATRICES

Then L is a linear transformation, since

L[α(x1, x2, x3) + β(y1, y2, y3)]

= L(αx1 + βy1, αx2 + βy2, αx3 + βy3)

= (αx1 + βy1 − αx2 − βy2, αx1 + βy1 + αx3 + βy3, αx3 + βy3)

= α(x1 − x2, x1 + x3, x3) + β(y1 − y2, y1 + y3, y3)

= αL(x1, x2, x3) + βL(y1, y2, y3).

We wish to find a matrix A such that L(x) = Ax for each x ∈ R3. To do this, one

must determine L(e1), L(e2), and L(e3).

L(e1) = L(1, 0, 0)′ =

 1
1
0


L(e2) = L(0, 1, 0)′ =

 −1
0
0


L(e3) = L(0, 0, 1)′ =

 0
1
1

 .

We choose these vectors to be the columns of A,

A =

 1 −1 0
1 0 1
0 0 1

 ,
then

L(x) =

 x1 − x2
x1 + x3
x3

 = Ax

for each x ∈ R3. �

In general, let T : U → V be a linear transformation, where U and V are vector

spaces of dimensions n and m, respectively. Let u1, u2,...,un be a basis for U and v1,

v2,...,vm be a basis for V . For j = 1, 2, ..., n, consider T (uj), which can be uniquely

represented as

T (uj) =
m∑
i=1

aijvi, j = 1, 2, ..., n,
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where the aij’s are scalars. These scalars completely determine all possible value of T :

If u ∈ U , then u =
∑n

j=1 xjuj, for some scalars x1, x2, ..., xn. Then

T (u) =
n∑

j=1

xjT (uj) (since T is a linear transformation)

=
n∑

j=1

xj

(
m∑
i=1

aijvi

)

=
n∑

j=1

xj

m∑
i=1

aijvi

=
m∑
i=1

n∑
j=1

aijxjvi (interchange summation) (1-7)

By definition, the rectangular array

Am×n =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . .
. . . . . .
. . . . . .
am1 am2 . . . amn

 ,

is called a matrix of order m× n, which indicates that A has m rows and n columns.

We could further write (1-6) as

T (u) =
m∑
i=1

yivi, (1-8)

where

yi =
n∑

j=1

aijxj, i = 1, 2, ...,m. (1-9)

Therefore, if A is the m×n matrix with element aij, x and y are the n- and m-vectors

with component x1, ..., xn and y1, ..., ym, then (1-8) is equivalent to

y = Ax. (1-10)

It is therefore noted that an m×n matrix A define a linear transformation from Rn to

Rm, and A is called the matrix representation of the T with respect to the par-

ticular bases. Conversely, any linear transformation between finite dimensional space

can be represented by a matrix that depends on a choice of basis for the two spaces.
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This is an underlying reason why matrix-vector multiplication is defined the way it is

below.

2.2 Some Terminology

A matrix is a rectangular array of numbers, denoted

Ai×k = [aik] =


a11 a12 . . . a1k
a21 a22 . . . a2k
. . . . . .
. . . . . .
. . . . . .
ai1 ai2 . . . aik

 ,

where a subscribed element of a matrix is always read as arow,column. Here we confine

the element to be real number.

A vector is a matrix with one row or one column. Therefore a row vector is A1×k

and a column vector is Ai×1 and commonly denoted as ak and ai, respectively. In the

followings of this course, we follow conventional custom to say that a vector is a column

vector except for particular mention.

The dimension of a matrix is the numbers of rows and columns it contained. If i

equals to k, then A is a square matrix. Several particular types of square matrices

occur in econometrics:

(a). A symmetric matrix A is one in which aik = aki for all i and k.

(b). A diagonal matrix is a square matrix whose nonzero elements appears on the

main diagonal, moving from upper left to lower right.

(c). A scalar matrix is a diagonal matrix with the same values in all diagonal elements.

(d). An identity matrix is a scalar matrix with ones on the diagonal. This matrix is

always denoted as I. A subscript is sometimes included to indicate its size. for

example,

I3 =

 1 0 0
0 1 0
0 0 1

 .
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(e). A triangular matrix is one that has only zeros either above or below the main

diagonal. For example,

A =

 1 0 0
2 3 0
4 5 6

 .

2.3 Algebraic Manipulation of Matrices

2.3.1 Equality of Matrices

Matrices A and B are equal if and only if they have the same dimensions and each

element of A equal the corresponding element of B.

A=B if and only if aik = bik for all i and k.

2.3.2 Transposition

The transpose of a matrix A, denoted as A′, is obtained by creating the matrix whose

kth row is the kth column of the original matrix. If A is i × k, then A′ is k × i. For

example,

A =


1 2 3
5 1 5
6 4 5
3 1 4

 , then A′ =

 1 5 6 3
2 1 4 1
3 5 5 4

 .
If A is symmetric, A=A′. It is also apparent that for any matrix A, (A′)′ = A.

Finally, the transpose of a column vector, ai is a row vector:

a′i =
[
a1 a2 . . . ai

]
.
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2.3.3 Matrix Addition

Matrices cannot be added unless they have the same dimension. The operation of

addition is extended to matrices by defining

C = A + B=[aik + bik].

We also extend the operation of subtraction to matrices precisely as if they were

scalars by performing the operation element by element. Thus,

C = A−B=[aik − bik].

It follows that

(a). matrix addition is commutative,

A + B = B + A,

(b). and associative,

(A + B) + C = A + (B + C),

(c). and that

(A + B)′ = A′ + B′. �

2.3.4 Matrix Multiplication

Matrices are multiplied by using the dot product.

Definition.
For an n× k matrix A and a k × T matrix B, the product matrix,

C = AB
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is an n× T matrix whose ikth element is the dot product of row i of A and column k

of B, i.e.

C = [cnT ], cik = ai · bk.

Generally, AB 6= BA. �

The product of a matrix and a vector is a vector and is written as

c = Ab

= b1a1 + b2a2 + ...+ bkak,

where bi is ith element of vector b and ai is ith column of matrix A. Here we see that

the right-hand side is a linear combination of the columns of the matrix where the

coefficients are the elements of the vector.

In the calculation of a matrix product C = An×kBk×T , it can be written as

C = AB

= [Ab1 Ab2 · · · AbT ],

where bi is ith column of matrix B.

Some general rules for matrix multiplication are as follows:

(a). Associate law: (AB)C = A(BC).

(b). Distributive law: A(B + C) = AB + AC.

(c). Transpose of a product: (AB)′ = B′A′.

(d). Scalar multiplication: αA = [αaik] for a scalar α. �

2.3.5 Matrix Inversion

To solve the system Ax = b for x, something akin to division by a matrix is needed.

Definition.
A square matrix A is said to be nonsingular or invertible if there exist a unique matrix
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(square) B such that AB = BA = I. The matrix B is said to be a multiplicative

inverse of A. We will refer to the multiplicative inverse of a nonsingular matrix A as

simply the inverse of A and denote it by A−1.4 �

Some computational results involving inverse are

|A−1| =
1

|A|
,

(A−1)−1 = A,

(A−1)′ = (A′)−1

(AB)−1 = B−1A−1,

(A + B)−1 = A−1 −A−1(B−1 + A−1)−1A−1.

when both inverse matrices exist. Finally, if A is symmetric, then A−1 is also sym-

metric.

2.4 An Useful Idempotent Matrix

A fundamental matrix in statistics is the one that is used to transform data to devia-

tions from their mean.

Definition.
An idempotent matrix is the one that is equal to its square, that is M2 = MM = M.�

An useful idempotent matrix we will often face is the matrix

Mi = I− i(i′i)−1i′ = I− 1

n
ii′,

where i is a column of ones’s (n× 1) vector.

4For a full column rank m×n matrix U (m > n), if there exists an n×m (here m can be equal to
n) matrix, X, satisfying the following conditions: (a) UXU = U , (b) XUX = X, (c) (UX)′ = UX,
and (d) (XU)′ = XU , then X is called the Moore-Penrose inverse of U , denoted as U+. It is
well-known that U+ exists and is unique for any m× n matrix U .
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Result.

Mix =


x1 − x̄
x2 − x̄
.
.
.

xn − x̄

 ,

where x = [x1, x2, ..., xn]′ and x̄ = 1
n

∑n
i=1 xi. It is easily seen that Mi is a symmetric

and idempotent matrix.

Proof.

As definition,

Mix =

(
I− 1

n
ii′
)

x = x− i
1

n
i′x = x− ix̄. �

Exercise 2.
Using the data I give to you, compute

∑N
i=1(X − X̄)2, where X̄ = 1

N

∑N
i=1Xi from the

idempotent matrix Mi such that
∑N

i=1(X − X̄)2 = x′Mix. �

2.5 Trace of Matrix

Definition.
The trace of a square k × k matrix is the sums of its diagonal elements:

tr(A) =
k∑

i=1

aii. �

Some useful results about trace are:

(a).

tr(c) = c for a constant c,
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(b).

tr(cA) = c(tr(A)),

(c).

tr(A) = tr(A′),

(d).

tr(A + B) = tr(B) + tr(A),

(e).

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

Exercise 3.
A matrix D is skew-symmetric if D′ = −D. Now if A is a symmetric n × n matrix,

and B is an n× n skew-symmetric matrix. Find tr(AB). �

2.6 The Nullspace of a Matrix

Definition.
Let A be an m×n matrix. Let N(A) denote the set of all solutions to the homogeneous

system Ax = 0. Thus

N(A) = {x ∈ Rn|Ax = 0}.

This set of all solutions forms a subspace of Rn and is called the null space of A. �

Example.
Determine N(A) if

A =

[
1 1 1 0
2 1 0 1

]
.
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One solution to this system is

x1 = x3 − x4
x2 = −2x3 + x4.

Thus, if we set x3 = α and x4 = β, then

x =


α− β
−2α + β

α
β

 = α


1
−2
1
0

+ β


−1
1
0
1

 .
The vector space N(A) consists of all vector of the form

α


1
−2
1
0

+ β


−1
1
0
1

 ,
which is a two-dimensional subspace in R4. �

Definition.
The dimension of the null space of a matrix is called the nullity of the matrix. �

2.7 Rank of a Matrix

If A is an m× n matrix, each row of A is an n−tuple of real numbers and hence can

be considered as a vector in R1×n. The m vectors corresponding to the rows of A will

be referred to as the row vectors of A. Similarly, each column of A can be considered

as a vector in Rm and one can associate n column vectors with the matrix A.

Definition.
If A is an m × n matrix, the subspace of R1×n spanned by the row vectors of A is

called the row space of A. The subspace of Rm spanned by the column vectors of A is

called the column space of A. �
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Example.
Let

A =

[
1 0 0
0 1 0

]
.

The row space of A is the set of all 3-tuples of the form

α(1 0 0) + β(0 1 0) = (α β 0).

The column space of A is the set of all vectors of the form

α

[
1
0

]
+ β

[
0
1

]
+ γ

[
0
0

]
.

Thus the row space of A is a two-dimensional subspace of R1×3 and the column space

of A is R2. �

Theorem.
The column space and the row space of a matrix have the same dimension. �

Definition.
The column(row) rank of a matrix is the dimension of the vector space that is spanned

by its columns (rows). In short from this definition we know that the column rank is

the number of linearly independent column of a matrix. �

Theorem.
The column rank and row rank of a matrix are equal, that is

rank(A)=rank(A’)≤ min(number of rows, numbers of columns). �

Definition.
A full (short) rank matrix is a matrix whose rank is equal (fewer) to the number of
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columns it contains. �

Theorem.
If A is an m× n matrix, then the rank of A plus the nullity of A equals n.

Example.
Let

A =

[
1 1 1 0
2 1 0 1

]
.

The rank of A = 2 and nullity of A = 2. Therefore 2 + 2 = 4. �

Theorem.
Let A be a m× n matrix. Then N(A′A) = N(A) and rank(A′A) = rank(A).

Proof.
We first prove that N(A′A) = N(A). If Ax = 0, then A′Ax = 0, so N(A) ⊂ N(A′A).

If A′Ax = 0, then 0 = x′A′Ax = (Ax)′Ax, so that Ax = 0, i.e. N(A′A) ⊂ N(A).

Thus N(A′A) = N(A).

From last theorem,

rank(A′A) = n− nullity(A′A) = n− nullity(A) = rank(A). �

Corollary.
rank(A′A) = rank(A) = rank(A′) = rank(AA′). �

Theorem.
In a product matrix C = AB, then

rank(C) = rank(AB) ≤ min(rank(A), rank(B)).

Proof.
For A is m×n and B is n× k. Write AB = [Ab1 Ab2..... Abk], where bi are the ith
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column of B. That is, each column of AB can be expressed as a linear combination

of the column of A, so the number of linearly independent columns in AB can not

be more than the number of linearly independent columns in A. Thus, rank(AB) ≤
rank(A). Similarly, each row of AB can be expressed as a linear combination of the

rows of B from which we get rank(AB) ≤ rank(B). �

Corollary.
If A is m× n and B is a square matrix of rank n, then rank(AB)=rank(A).

Proof.

For any two matrix,

rank(AB) ≤ rank(A).

If B is nonsingular, then

rank(A) = rank(ABB−1) ≤ rank(AB).

Hence rank(AB)=rank(A). �

Theorem.
Let A is m× n matrix, B is m×m matrix, and C is n× n matrix. Then if B and C

are nonsingular matrices, it follows that

rank(BAC) = rank(BA) = rank(A). (1-11)

Proof.

By last corollary, rank(BAC) = rank[(BA)C] = rank(BA). Since rank(BA) =

rank(A′B′) = rank(A′) = rank(A), the result is obtained. �

2.8 Determinant

With each square matrix it is possible to associate a real number called the determi-

nant of the matrix. The value of this number will tell us whether or not the matrix is
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singular.

Example.
The vectors of the matrix is

A = [a, b]

=

[
4 2
1 3

]
.

The area of the parallelogram formed by the columns of A can be obtained by manip-

ulating congruent triangles. The result is 4(3)− 1(2) = 10. The (absolute) area is the

determinant of A, denoted as |A|.

0 1 2 3 4 5 6 7 8

First coordinate

Second coordinate

1

2

3

4

5

6

a

b

�

If the columns of A were linearly dependent, then the two vectors would lie on the

same line. The “parallelogram” would collapse to a line and would have zero area.

This concept implies that if the columns of a (square) matrix are linear dependent,
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then its determinant is zero.

Theorem.
The determinant of a matrix is nonzero if and only if it has full rank. �

results.
(a).

|cD| = ck|D|, for a constant c, and k × k matrix D.

(b).

|CD| = |C| · |D| for two matrices C and D.

(c).

|C| = |C′|. �
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3 Partitioned Matrices

Often it is useful to think of a matrix as being composed of a number of submatrices. A

matrix A can be partitioned into smaller matrices by drawing horizontal lines between

the rows and vertical lines between the columns. For example, we might write

Am×n =

[
A11 A12

A21 A22

]
, or A =

[
a1 a2 · · · an

]
, or A =


a1

a2

...
am

 ,
and note that

A′ =

[
A′11 A′21
A′12 A′22

]
.

A common special case is the block diagonal matrix:

A =

[
A11 0
0 A22

]
,

where A11 and A22 are square matrices.

3.1 Addition and Multiplication of Partitioned Matrices

For conformably partitioned matrices Aij and Bij,

A + B =

[
A11 + B11 A12 + B12

A21 + B21 A22 + B22

]
.

That is, for addition, the dimension of Aij and Bij must be the same. However, for

AB =

[
A11 A12

A21 A22

]
×
[

B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
,

the number of columns in Aij must equal the number of rows in Bjk for all pairs i and

j.
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Example.
Recall the calculation of the product of a matrix and a vector

c = An×kbk×1

=
[

a1 a2 . . . ak

]

b1
b2
.
.
.
bk


= b1a1 + b2a2 + ...+ bkak,

and that of a matrix product C = An×kBk×l

C = AB

= An×k
[

(b1)k×1 (b2)k×1 . . . (bl)k×1
]

= [Ab1 Ab2 · · · Abl]

=


(a1)1×k
(a2)1×k

.

.

.
(an)1×k

Bk×l

=


a1B
a2B
.
.
.

anB

 . �

Two cases frequently encountered are of the form[
A1

A2

]′ [
A1

A2

]
=

[
A′1 A′2

] [ A1

A2

]
=

[
A′1A1 + A′2A2

]
,

and [
A11 0
0 A22

]′ [
A11 0
0 A22

]
=

[
A′11A11 0

0 A′22A22

]
.
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3.2 Determinants of Partitioned Matrices

Results.
(a). ∣∣∣∣ A11 0

0 A22

∣∣∣∣ = |A11| · |A22|.

(b). ∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A22| · |A11 −A12A
−1
22 A21|

= |A11| · |A22 −A21A
−1
11 A12|. �

3.3 Inverses of Partitioned Matrices

Results.
(a). The inverse of a block diagonal matrix is[

A11 0
0 A22

]−1
=

[
A−111 0
0 A−122

]
.

(b). For a general 2× 2 partitioned matrix,[
A11 A12

A21 A22

]−1
=

[
A−111 (I + A12F2A21A

−1
11 ) −A−111 A12F2

−F2A21A
−1
11 F2

]
,

where F2 = (A22 −A21A
−1
11 A12)

−1. �
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Exercise 4.
Show that[

A11 A12

A21 A22

]−1
is also[

F1 −F1A12A
−1
22

−A−122 A21F1 A−122 (I + A21F1A12A
−1
22 )

]
,

where F1 = (A11 −A12A
−1
22 A21)

−1. �

3.4 Kronecker Products

Definition.
For general matrices A and B, the Kronecker products of them is

A⊗B =


a11B a12B . . . a1kB
a21B a22B . . . a2kB
. . . . . .
. . . . . .
. . . . . .

ai1B ai2B . . . aikB

 . �

Notice that if A is i× k and B is m× n, then A⊗B is (im)× (kn).

Results.
Let A, B, C, and D be any matrices, then

(1).

(A⊗B)(C⊗D) = (AC)⊗ (BD),

(2).

(A + B)⊗C = (A⊗C) + (B⊗C),

(3).

(A⊗B)′ = A′ ⊗B′. �
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Results.
Let A be m×m and B be k × k nonsingular matrices, then

(1).

(A⊗B)−1 = A−1 ⊗B−1.

(2).

tr(A⊗B) = tr(A)tr(B).

Proof.
(1).

(A−1 ⊗B−1)(A⊗B) = (A−1A⊗B−1B) = Im ⊗ Ik = Imk.

(2).

tr(A⊗B) =
m∑
i=1

aiitr(B) = tr(A)tr(B). �

3.5 The Vec Operator

The operator that transforms a matrix to a vector is known as the vec operator. If the

m×n matrix A has ai as its ith column, then vec(A) is the m ·n× 1 vectors given by

vec(A) =


a1

a2

.

.

.
an

 .
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Result.
Let a be m× 1 and b be n× 1 vectors, then

(1).

vec(a) = vec(a′) = a,

(2).

vec(ab′) = b⊗ a.

Proof.
(2).

vec(ab′) = vec([b1a b2a ... bna]) =


b1a
b2a
.
.
.
bna

 = b⊗ a. �

Result.
Let A and B both be m× n matrices, then

tr(A′B) = {vec(A)}′vec(B). (1-12)

Proof.
Let a1,...,an denote the columns of A and b1,...,bn denote the columns of B. Then

tr(A′B) =
n∑

i=1

(A′B)ii =
n∑

i=1

a′ibi = [a′1 ... a′n]


b1

.

.

.
bn

 = {vec(A)}′vec(B). �

Result.
Let A, B, and C be matrices of dimension m× n, n× p and p× q, respectively. Then

vec(ABC) = (C′ ⊗A)vec(B). �
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Result.
Let A, B, C, and D be matrices of dimension m×n, n×p, p×q, and q×m respectively.

Then

tr(ABCD) = {vec(A′)}′(D′ ⊗B)vec(C).

Proof.
Using (1-11), it follows that

tr(ABCD) = tr{A(BCD)} = {vec(A′)}′vec(BCD),

and using (c). we have that

vec(BCD) = (D′ ⊗B)vec(C),

so the proof is completed. �

Exercise 5.
Let

Π =


Π1 0 . . 0
0 Π2 . . 0
.
.
.
0 . . . ΠN

 ,

where Πi is k × pi matrix. Find an expression for the matrix A such that

vec (Π′) = A ·


vec(Π′1)

.

.

.
vec(Π′N)

 . �
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4 Diagonalization of a Matrix

Almost all vectors x ∈ Rn change direction, when they are multiplied by the square

matrix An×n. Certain exceptional vectors x are in the same direction as Ax. Those

are the “eigenvectors”. Multiply an eigenvector by A, and the vector Ax is a number

λ times the original x. The basic equation is Ax = λx. The number λ is an eigenvalue

of A. The eigenvalue λ tells whether the special vector x is stretched or shrunk or

reversed or left unchanged–when it is multiplied by A.

4.1 Eigenvalues, Eigenvectors, and Eigenspaces

Eigenvalues and eigenvectors are special implicitly defined functions of the elements of

a square matrix.

Definition.
If A is an n× n matrix, then any scalar λ satisfying the equation

Ax = λx, (1-13)

for some n × 1 vector x 6= 0, is called an eigenvalues of A. The vector x is called

an eigenvector of A corresponding to eigenvalue λ and equation (1-12) is called the

eigenvalue-eigenvector equation of A. �

Equation (1-12) can be equivalently expressed as

(A− λI)x = 0.

Notices that if |A−λI| 6= 0, then (A−λI)−1 would exist and so premultiplication of this

equation by this inverse would lead to a contradiction of the already stated assumption

that x 6= 0. Thus, any eigenvalue λ must satisfy the determinantal equation

|A− λI| = 0, (1-14)

which is known as the characteristic equation of A.
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Example.

Let A =

[
5 1
2 4

]
, then the eigenvalues of A are the solution to

∣∣∣∣ 5− λ 1
2 4− λ

∣∣∣∣ = 0.

Thus, the eigenvalues of A are λ1 = 6 and λ2 = 3.

To find the eigenvectors belonging to λ1 = 6, we solve (A − 6I)x = 0 to get

x1 =

[
x2
x2

]
. Thus any nonzero multiple of

[
1
1

]
is an eigenvectors belonging to λ1

and

[
1
1

]
is a basis for the eigenspace corresponding to λ1. Similarly, any nonzero

multiple of

[
−1/2

1

]
is an eigenvector belonging to λ2. �

From the example above, we see that eigenvectors are not uniquely defined.5 To

remove the indeterminacy, we always (but not necessary) impose the scale constraint

that

x′ixi = ‖xi‖2 = 1, ∀i = 1, ..., n.

This additional equation x′ixi = 1 produce complete solutions for both eigenvectors

in example above:

For λ1 = 6, x1 = ±
[

1/
√

2

1/
√

2

]
,

For λ2 = 3, x2 = ±
[

1/
√

5

−2/
√

5

]
.

For an n × n matrix, the characteristic equation is an nth order polynomial in λ.

Its solution may be n distinct values, as in the preceding example, or may contain

repeated values of λ and may contain some zeros as well. However, the eigenvectors

belonging to distinct eigenvalues are linear independent.

Theorem.
If λ1, λ2, ..., λk are distinct eigenvalues of the n×n matrix A with corresponding eigen-

vectors x1,x2, ...,xk where k ≤ n, then x1,x2, ...,xk are linear independent.

5Note that if a nonnull vector x satisfies (1-12) for a given value of λ, then so will (αx) for any
nonzero scalar α.

r 2018 by Prof. Chingnun Lee 39 Ins.of Economics,NSYSU,Taiwan



Ch.1 Linear Algebra 4 DIAGONALIZATION OF A MATRIX

Proof.
See p. 273 of Leon, S.J. (1990). �

Furthermore, there is no guarantee that the eigenvalues ( and eigenvectors) will be

real.

Exercise 6.

Find the eigenvectors and eigenvalues of the matrix A =

[
1 1
−2 −1

]
. �

4.2 Symmetric Matrices

Many of the applications involving eigenvalues and eigenvectors in statistics are ones

that deal with a symmetric matrix. Symmetric matrices have some especially nice

properties regarding eigenvalues and eigenvectors. In this section we will develop some

of these properties.

We have seen that a matrix may have complex eigenvalues even when the matrix

itself is real. This is not the case for symmetric matrices.

Theorem.
Let A be an n × n real symmetric matrix. Then the eigenvalues of A are real, and

corresponding to any eigenvalue there exist eigenvectors that are real.

Proof.
Let λ = α + iβ be an eigenvalue of A and x = y + iz a corresponding eigenvector,

where i =
√
−1. We will first show that β = 0. Substitution of these expressions for λ

and x in the eigenvalue-eigenvector equation (1-12) yields

A(y + iz) = (α + iβ)(y + iz). (1-15)

Premultiplying (1-14) by (y − iz)′ we get

(y − iz)′A(y + iz) = (α + iβ)(y − iz)′(y + iz),
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which simplifies to

y′Ay + z′Az = (α + iβ)(y′y + z′z), (1-16)

since y′Az = z′Ay follows from the symmetry of A. Now x 6= 0 implies that (y′y +

z′z) > 0 and, consequently, we must have β = 0 since the left-hand side of (1-15) is

real. Substituting β = 0 in (1-14), we find that

Ay + iAz = αy + iαz.

Thus, x = y+ iz will be an eigenvector of A corresponding to λ = α as long as y and z

satisfy Ay = αy, Az = αz, and at least one is not 0 so that x 6= 0. A real eigenvector

is then constructed by selecting y 6= 0, such that Ay = αy and z = 0. �

We have seen that a set of eigenvectors of an m×m matrix A is linearly indepen-

dent if the associated eigenvalues are all different from one another. We will now show

that, if A is symmetric, we can say a bit more.

Theorem.
If A is an m ×m real symmetric matrix with m distinct eigenvalues, then the set of

corresponding eigenvectors will form a group of mutually orthogonal vectors.

Proof.
Let

Axi = λixi, and Axj = λjxj, ∀i 6= j.

Since the eigenvalues of A are distinct, it follows that

λix
′
jxi = x′j(Axi) = (x′jA)xi = (A′xj)

′xi = (Axj)
′xi = (λjxj)

′xi = λjx
′
jxi.

Thus, (λi − λj)x′jxi = 0. Because λi 6= λj, it implies x′jxi = 0 as required. �

The above result is still possible even when A has multiple eigenvalues.
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Theorem.
If the m×m matrix A is symmetric, then it is possible to construct a set of m eigen-

vectors of A such that the set is orthonormal, i.e. x′ixi = 1 for ∀i and x′ixj = 0 for i 6= j.

Proof.
See p. 95 (Theorem 3.10) of Schoott, J.R. (1997). �

4.3 Diagonalization of a Matrix

In this section we consider the problem of factoring an n× n matrix A into a product

of the form SDS−1, where D is diagonal.

Definition.
An n × n matrix A is said to be diagonalizable if there exists a nonsingular matrix S

and a diagnoal matrix D such that

S−1AS = D.

We say that S diagonalizes A. �

From now on, we focus only on the case that A is a symmetric matrix.6 It is

convenient to collect the n eigenvectors in a n × n matrix whose ith column is the xi

corresponding to λi,

X = [x1 x2..... xn],

and the n-eigenvalues in the same order, in a diagonal matrix,

Λ =


λ1 0 . . . 0
0 λ2 0 . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . λn

 = [λ1, λ2, .... ,λn].

6Because it guarantees S−1 exists.
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It is easy to see that

AX = [Ax1 Ax2..... Axn]

= [λ1x1, λ2x2, .... , λnxn],

and

XΛ = [Xλ1, Xλ2, .... ,Xλn]

= [λ1x1, λ2x2, .... , λnxn].

Therefore, we have the useful results that

AX = XΛ. (1-17)

Since the eigenvectors are orthogonal and x′ixi = 1, we have

X′X =


x′1
x′2
...

x′n

 [ x1 x2 · · · xn

]
=


x′1x1 x′1x2 · · · x′1xn

x′2x1 x′2x2 · · · x′2x1
...

x′nx1 x′nx2 · · · x′nxn


= I. (1-18)

equation (1-18) implies that

X′ = X−1.

Consequently,

XX′ = XX−1 = I.

By premultiplying (1-17) by X′ and using (1-18), we can extract the eigenvalues of

A.

Definition.
The diagonalization of a symmetric matrix A is

X′AX(= X′XΛ = IΛ) = Λ. �
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Alternatively, by postmultiplying (1-17) by X′ and using (1-18), we obtain a useful

representation of A.

Definition.
The spectral decomposition of a symmetric matrix A is

A(= AXX′) = XΛX′. �

4.4 Rank, Trace and Determinant of a matrix

Using the results in the spectral decomposition and matrix diagnoalization, it is easy

to see that

(a).

rank(A) = rank(XΛX′) = rank(Λ) = numbers of non zero eigenvalues of A.

(b).

tr(A) = tr(XΛX′) = tr(ΛX′X) = tr(ΛI) = tr(Λ)

=
n∑

i=1

λi = summations of eigenvalues of A.

(c).

|A| = |XΛX′| = |X||Λ||X′|

= |Λ||X′||X|

= |Λ||X′X|

= |Λ||I|

= |Λ| =
n∏

i=1

λi = products of eigenvalues of A.
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Exercise 7.

Let A =

 1 2 3
2 9 6
3 6 7

. Find eigenvalues and eigenvectors of A. In addition, verify that

tr(A) =
∑3

i=1 λi, |A| =
∏3

i=1 λi, and eigenvectors are orthonormal. Finally, is A a full

rank matrix ? �

Exercise 8.

Let Σ =

 2 1 1
1 2 1
1 1 2

. Find eigenvalues and eigenvectors of Σ. �

4.5 Powers of a Matrix

4.5.1 Expanding a Matrix by Integer Power

We often use expressions involving powers of matrices, such as AA = A2. For positive

integer power, these expressions can be computed by repeated multiplication. Consider

first

AA = A2 = (XΛX′)(XΛX′)

= XΛX′XΛX′

= XΛIΛX′

= XΛΛX′

= XΛ2X′. (1-19)

It implies the following results.

Result.
For any symmetric matrix, the eigenvalus of A2 are the squares of those of A, and the

eigenvectors are the same. �
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Since A3 = AA2 = XΛ3X′ and so on, (1-19) extend to any positive integer.

Result.
For any symmetric matrix, the eigenvalus of Ak are the λki , and the eigenvectors are

the same, where λi are the eigenvalues of A. �

If A is nonsingular, so that all its roots λi are nonzero, the this proof in (1-19) can

be extended to negative powers as well. If A−1 exists, then

A−1 = (XΛX′)−1

= (X′)−1Λ−1X−1

= XΛ−1X′.

It implies the following results.

Result.
If A−1 exists, the eigenvalus of A−1 are the reciprocals of those of A, and the eigen-

vectors are the same. �

By extending the notion of repeated multiplication, we have a more general result.

Theorem.
For any nonsingular symmetric matrix A = XΛX′, then

Ak = XΛkX′, k = ...,−2,−1, 0, 1, 2, ... (1-20)

�
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4.5.2 Square Root of a Matrix

Sometimes we may require a matrix A such that BB = A,7 the B is denoted as A1/2,

and it can be computed as

A1/2 = XΛ1/2X′

= X



√
λ1 0 . . . 0
0
√
λ2 0 . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . .

√
λn

X′,

as long as all λi are nonnegative. This equation satisfies the requirement for a square

root, since

A1/2A1/2 = XΛ1/2X′XΛ1/2X′

= XΛ1/2Λ1/2X′

= XΛX′

= A.

If we continue in this fashion, we can define the powers of a matrix more generally,

still assuming that all the eigenvalues are nonnegative. For example, A1/3 = XΛ1/3X′.

Combining the above results we have the following theorem.

Theorem.
For a positive definite matrix A, Ar = XΛrX′, for any real number r. �

4.6 Idempotent Matrices

A symmetric idempotent matrix is the one such that

Ak = XΛkX′ = XΛX′ = A, for all nonnegetive integer k.

7In this case it is also true that B′B = A since B is symmetric.
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Therefore, (λi)
k = λi for all i = 1, .., n. That is all the eigenvalue of an idempotent

matrix are 0 or 1. An immediate results from this is that rank of idempotent matrix

is equal to its trace.

4.7 Quadratic Forms and Definite Matrices

Many optimization problems involve double sums of the following form.

Definition.
Let A = [aij] be a symmetric matrix of dimension n× n, and let c = (c1, c2, ..., cn)′ be

a column vector. The function

q = c′Ac

=
n∑

i=1

n∑
j=1

aijcicj

is called a quadratic form in c, and A is referred as the matrix of the quadratic

form. �

Example.
In optimization z = f(x1, x2), the FOC is

dz = f1dx1 + f2dx2,

and the SOC is8

d2z = f11dx
2
1 + 2f12dx1dx2 + f22dx

2
2,

which can be written as

d2z = [dx1 dx2]

[
f11 f12
f21 f22

] [
dx1
dx2

]
, (1-21)

8From p.310 of Chiang, A.C. (1984): For the function z = f(x), for maximum of z, f ′′(x) ≤ 0 can
be translated into d2z ≤ 0.
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and is a quadratic form. �

Definition.
For a given symmetric matrix A,

(a). If c′Ac > (<)0 for all nonzero c, the A is positive (negative) definite.

(b). If c′Ac ≥ (≤)0 for all nonzero c, the A is nonnegative definite or positive semidef-

inite (nonpositive definite). �

Theorem.
Let A be a symmetric matrix. If all the eigenvalues of A are positive (negative), then

A is positive definite (negative definite). If some of the eigenvalues are zero, then A is

nonnegative definite if the remainder are positive. If A has both negative and positive

roots, then A is indefinite.

Proof.
Recall that

A = XΛX′,

therefore the quadratic form can be written as

c′Ac = c′XΛX′c

= y′Λy

=
n∑

i=1

λiy
2
i ,

where y = X′c is a n× 1 real vector. �

4.7.1 Nonnegative Definite Matrices

Some useful results pertaining to non-negative definite matrices are in the following:
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Results.
(a). If A is nonnegative definite, then |A| ≥ 0.

(b). If A is positive definite, so is A−1.

(c). If A is n×k with full rank and n > k, then A′A is positive and AA′ is nonnegative.

Proof (c).

Since A is full rank with n > k, so Ac = c1a1 + c2a2 + ... + ckak 6= 0. Therefore,

c′(A′A)c = (Ac)′(Ac) = y′y =
∑

i y
2
i > 0. Hence A′A is positive. Meanwhile, a pos-

sible “zero” solution exist in the equation A′c = 0, since A′c = c1ȧ1 + c2ȧ2 + ...+ cnȧn.

Here, ai, i = 1, 2, ..., k is the ith column of A and ȧj, j = 1, 2, ..., n is the jth column of

A′. �

4.7.2 Idempotent Quadratic Forms

A quadratic form c′Ac is called a “Idempotent Quadratic Forms” when A is a symmet-

ric idempotent matrix. Some useful results pertaining to idempotent quadratic forms

are in the following:

Result.

(a). Every symmetric idempotent matrix is nonnegative definite.

(b). If A is symmetric and idempotent n× n with rank j, then every quadratic form

in A can be written as c′Ac=
∑j

i=1 y
2
i . �
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5 The Triangular Factorization

In some applications, we shall require a matrix P such that

P′P = Ω.

One choice is

P = Λ1/2X′,

where Λ and X are the matrices of eigenvalues and eigenvectors of Ω as in (1-16).

Hence,

P′P = (X′)′(Λ1/2)′Λ1/2X′

= XΛX = Ω,

as desired. Thus the spectral decomposition of Ω, Ω = XΛX is a useful results for

this kind of computation.9

The Cholesky factorization of a symmetric positive definite matrix is an alternative

representation that is useful in regression. We first introduce the triangular factoriza-

tion.

Theorem.
Any positive definite symmetric (n × n) matrix Ω has a unique representation of the

form

Ω = ADA′,

where A is a lower triangular matrix with 1s along the principal diagonal,

A =



1 0 0 . . . 0
a21 1 0 . . . 0
a31 a32 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
an1 an2 an3 . . . 1


,

9It is to be noted that here P is not symmetric since P′ = (X′)′(Λ1/2)′ = X(Λ1/2)′ 6= Λ1/2X′ = P.
If we let Ṗ = XΛ1/2X′, then Ṗ′Ṗ = Ω and Ṗ is symmetric.
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and D is a diagonal matrix,

D =



d11 0 0 . . . 0
0 d22 0 . . . 0
0 0 d33 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . dnn


,

where dii > 0 for all i. This is known as the triangular factorization of Ω.

Proof.

Consider

Ω =



Ω11 Ω12 Ω13 . . . Ω1n

Ω21 Ω22 Ω23 . . . Ω2n

Ω31 Ω32 Ω33 . . . Ω3n

. . . . . . .

. . . . . . .

. . . . . . .
Ωn1 Ωn2 Ωn3 . . . Ωnn


.

Our goal here is to transform Ω to be a diagonal matrix. This can be accomplished

in the first step by transform Ω to be a matrix with zeros in all the first rows and first

columns except for the (1, 1) element. This set of operations is Ω pre-multiplied by E1

and post-multiplied by E′1 the result is

E1ΩE′1 = H, (1-22)

where

E1 =



1 0 0 . . . 0
−Ω21Ω

−1
11 1 0 . . . 0

−Ω31Ω
−1
11 0 1 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
−Ωn1Ω

−1
11 0 0 . . . 1


(1-23)
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and

H =



h11 0 0 . . . 0
0 h22 h23 . . . h2n
0 h32 h33 . . . h3n
. . . . . . .
. . . . . . .
. . . . . . .
0 hn2 hn3 . . . hnn



=



Ω11 0 0 . . . 0
0 Ω22 − Ω21Ω

−1
11 Ω12 Ω23 − Ω21Ω

−1
11 Ω13 . . . Ω2n − Ω21Ω

−1
11 Ω1n

0 Ω32 − Ω31Ω
−1
11 Ω12 Ω33 − Ω31Ω

−1
11 Ω13 . . . Ω3n − Ω31Ω

−1
11 Ω1n

. . . . . . .

. . . . . . .

. . . . . . .
0 Ωn2 − Ωn1Ω

−1
11 Ω12 Ωn2 − Ωn1Ω

−1
11 Ω13 . . . Ωnn − Ωn1Ω

−1
11 Ω1n


.

The matrix E1 always exists, provided that Ω11 6= 0. This is ensured in the present

case, because Ω11 is equal to e′1Ωe1, where e′1 = [1 0 0 ... 0]. Since Ω is positive

definite, e′1Ωe1 must be greater than zero.10

We next proceed in exactly the same way with the second row and second column

of H. This set of operations is H promultiplied by E2 and postmultiplied by E′2 the

result is

E2HE′2 = K, (1-24)

10To see this, consider n = 3 for example, E1 is so constructed such that the first column of E1Ω
is zero, i.e.

E1Ω =

 1 0 0
−Ω21Ω−111 1 0
−Ω31Ω−111 0 1

 Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33


=

 Ω11 Ω12 Ω13

0 Ω22 − Ω21Ω−111 Ω12 Ω23 − Ω21Ω−111 Ω13

0 Ω32 − Ω31Ω−111 Ω12 Ω33 − Ω31Ω−111 Ω13

 .
It is easy to see that

E1ΩE′1 =

 Ω11 Ω12 Ω13

0 Ω22 − Ω21Ω−111 Ω12 Ω23 − Ω21Ω−111 Ω13

0 Ω32 − Ω31Ω−111 Ω12 Ω33 − Ω31Ω−111 Ω13

 1 −Ω21Ω−111 −Ω31Ω−111

0 1 0
0 0 1


=

 Ω11 0 0
0 Ω22 − Ω21Ω−111 Ω12 Ω23 − Ω21Ω−111 Ω13

0 Ω32 − Ω31Ω−111 Ω12 Ω33 − Ω31Ω−111 Ω13

 (using the fact that Ω is symmetric. )
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where

E2 =



1 0 0 . . . 0
0 1 0 . . . 0
0 −h32h−122 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 −hn2h−122 0 . . . 1


(1-25)

and

K =



h11 0 0 . . . 0
0 h22 0 . . . 0
0 0 h33 − h32h−122 h23 . . . h3n − h32h−122 h2n
. . . . . . .
. . . . . . .
. . . . . . .
0 0 hn3 − hn2h−122 h23 . . . hnn − hn2h−122 h2n


.

The matrix E2 always exists, provided that h22 6= 0. But h22 can be calculated as

h22 = e′2He2, where e′2 = [0 1 0 ... 0]. Moreover, H = E1ΩE′1, where Ω is positive

definite and E1 is given by (1-23). Since E1 is lower triangular, its determinant is

the product of terms along the principle diagonal, which are all unity. Thus E1 is

nonsingular, meaning that H = E1ΩE′1 is positive definite and so h22 = e′2He2 must

be strictly positive. Thus the matrix in (1-24) can always be calculated.

Proceeding through each of the columns and rows with the same approach, we see

that for any positive symmetric matrix Ω there exist matrices E1, E2,...,En−1 such that

En−1 · · · E2E1ΩE′1E
′
2 · · · E′n−1 = D, (1-26)

where

D =



Ω11 0 0 . . . 0
0 Ω22 − Ω21Ω

−1
11 Ω12 0 . . . 0

0 0 h33 − h32h−122 h23 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . cnn − cn,n−1c−1n−1,n−1cn−1,n


,

with all the diagonal entries of D strictly positive. In general, Ej is a matrix with

nonzero value in the jth column below the principle diagonal, 1s along the principle

diagonal, and zeros everywhere else.
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Thus each Ej is lower triangular with unit determinant. Hence E−1j exists, and the

following matrix exists:

A = (En−1 · · · E2E1)
−1 = E−11 E−12 · · · E−1n−1.

If (1-26) is premultiplied by A and postmulptiplied by A′, the result is

Ω = ADA′,

where A is a lower triangular matrix with 1s along the principle diagonal from the fact

that the product of lower triangular matrix is also triangular and the inverse of a lower

triangular matrix is also lower triangular. �

5.1 The Cholesky Factorization

A close related factorization of a symmetric positive definite matrix Ω is obtained

as follows. Define D1/2 to be the (n × n) diagonal matrix whose diagonal entries

are the square roots of the corresponding elements of the matrix D in the triangular

factorization:

D1/2 =



√
d11 0 0 . . . 0
0

√
d22 0 . . . 0

0 0
√
d33 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
0 0 0 . . .

√
dnn


.

since the matrix D is unique and has strictly positive diagonal entries, the matrix D1/2

exists and is unique. Then the triangular factorization can be written as

Ω = AD1/2D1/2A′ = AD1/2(AD1/2)′

or

Ω = PP′, (1-27)
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where

P ≡ AD1/2

=



1 0 0 . . . 0
a21 1 0 . . . 0
a31 a32 1 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
an1 an2 an3 . . . 1





√
d11 0 0 . . . 0
0

√
d22 0 . . . 0

0 0
√
d33 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
0 0 0 . . .

√
dnn



=



√
d11 0 0 . . . 0

a21
√
d11

√
d22 0 . . . 0

a31
√
d11 a32

√
d22

√
d33 . . . 0

. . . . . . .

. . . . . . .

. . . . . . .
an1
√
d11 an2

√
d22 an3

√
d33 . . .

√
dnn


.

Expression (1-27) is known as the Cholesky factorization of Ω.

Exercise 9.

Let Ω =

 4 2 −2
2 10 2
−2 2 5

. Find lower triangular matrices P and A, and a diagonal

matrix D such that Ω = PP′ (Cholesky decomposition) and Ω = ADA′ (triangular

factorization). �
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6 Calculus and Matrix Algebra

6.1 Conventional Notation

We can regard a function y = f(x1, x2, ..., xn) = f(x) as scalar-valued function of a

vector. Following the convention, the following is the results of matrix’s differentiation.

Results.

(a). Differentiating a scalar with respect to a column yield a column. The vector of

partial derivatives, or gradient vector, or simply gradient, is

∂f(x)

∂x
=



∂f(x)
∂x1
∂f(x)
∂x2

.

.

.
∂f(x)
∂xn


=



∂y
∂x1
∂y
∂x2

.

.

.
∂y
∂xn


=


f1
f2
.
.
.
fn

 ≡ gradient vector. �

Example.

A linear function is y = a1x1 + a2x2 + ...+ anxn = a′x. Then

∂a′x

∂x
=



∂a′x
∂x1
∂a′x
∂x2

.

.

.
∂a′x
∂xn


=


a1
a2
.
.
.
an

 = a.

It can also easily found that

∂a′x

∂x′
= a′. (1-28)

�
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Example.

A quadratic form is y = x′Ax. Then

∂x′Ax

∂x
=

{
2Ax when A is symmetric;

(A + A′)x when A is not symmetric.
�

(b). Differentiating a column vector with respect to a row vector yield a matrix. A

second derivatives matrix or Hessian is computed as

∂
[
∂f(x)
∂x

]
∂x′

=



∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

. . . . . .

. . . . . .

. . . . . .
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn



=


f11 f12 . . . f1n
f21 f22 . . . f2n
. . . . . .
. . . . . .
. . . . . .
fn1 fn2 . . . fnn


=

∂2f(x)

∂x∂x′
, Hessian Matrix. �

Example.

A set of linear function is y = Ax. It follows that yi = aix, where ai is the ith

row of A. Therefore

∂yi
∂x′

=
∂aix

∂x′
= ai. (using (1− 28))

Collecting all the elements, we have

∂Ax

∂x′
=



∂y1
∂x′
∂y2
∂x′

.

.

.
∂yn
∂x′

 =


a1

a2

.

.

.
an

 = A. (1-29)

�
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(c). Differentiating a scalar with respect to a n× n matrix yield a n× n matrix.

Example.

(i).

∂x′Ax

∂A
= xx′,

(ii).

∂ ln |A|
∂A

= (A−1)′. �

6.2 Optimization

Many economic and statistic’s problems involve finding the x (or x) where f(x) (or

f(x)) is maximized or minimized.

Results.

(a). The first-order (necessary) condition for an optimum when y = f(x) is

dy

dx
= 0

(b). The second-order (sufficient) condition for an optimum when y = f(x) is

for a maximum,
d2y

dx2
< 0;

for a minimum,
d2y

dx2
> 0. �

Results.
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(a). . The first-order (necessary) condition for an optimum when y = f(x) is

∂f(x)

∂x
= 0.

(b). The second-order (sufficient) condition for an optimum when y = f(x) is

for a maximum, H =
∂2f(x)

∂x∂x′
must be negative definite;

for a minimum, H =
∂2f(x)

∂x∂x′
must be positive definite. �

Example.
Let’s consider a two-product firm under a perfectly competitive market. Accordingly,

a firm’s revenue function is

R = 12Q1 + 18Q2,

where Qi represents the output level of the ith product per unit of time. The firm’s

cost function is assumed to be

C = 2Q2
1 +Q1Q2 + 2Q2

2.

The profit function of this hypothetical firm can now be written as

π = R− C = 12Q1 + 18Q2 − 2Q2
1 −Q1Q2 − 2Q2

2

It is our task to find the levels of Q1 and Q2 which, in combination, will maximize π.

For this purpose, we first find the first-order partial derivatives of the profit function:

π1

(
=

∂π

∂Q1

)
= 12− 4Q1 −Q2 (1-30)

π2

(
=

∂π

∂Q2

)
= 18−Q1 − 4Q2. (1-31)

Setting these both equal to zero, to satisfy the necessary condition for maximum, we

have Q∗1 = 2 and Q∗2 = 4, implying an optimal profit π∗ = 48 per unit of time.

To be sure that this does represent a maximum profit, let us check the second-order

condition. The second partial derivatives, obtainable by partial differentiation of (1-30)

and (1-31), give us the following Hessian:

H =

[
π11 π12
π21 π22

]
=

[
−4 −1
−1 −4

]
.

r 2018 by Prof. Chingnun Lee 60 Ins.of Economics,NSYSU,Taiwan



Ch.1 Linear Algebra 6 CALCULUS AND MATRIX ALGEBRA

Since eigenvalues of H is −3 and −5 and both are smaller than zero, the Hessian matrix

(or d2z) is negative definite, and the solution does maximize the profit. �

End of this Chapter
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