
Ch. 2 Probability Theory
(October 26, 2018)

The concept of chance and uncertainty are as old as civilization itself. People have

always had to cope with uncertainty about the weather, their food supply, and other

aspects of their environment, and have strives to reduce this uncertainty and their

effects.

In this chapter we discuss general probability models. These models are used to

describe events that occur “by chances” or “randomly”. Most of us have some idea of

what probability is. Surprisingly enough, however, it is difficult to define probability

in a way that applies to every situation where we use the term and in a way which is

agreeable to most people.

1 Descriptive Study of Data

1.1 Histograms and Their Numerical Characteristics

By descriptive study of data we refer to the summarization and exposition (tabulation,

grouping, graphical representation) of observed data as well as the derivation of nu-

merical characteristics such as measures of location, dispersion and shape. Although

the descriptive study of data is an important facet of modeling with real data itself,

in the present study it is mainly used to motivate the need for probability theory and

statistical inference proper.

In order to make the discussion more specific let us consider the after-tax personal

income data of 12000 household for 1999-2000 in Taiwan. There data in row form con-
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Ch.2 Probability 1 DESCRIPTIVE STUDY OF DATA

stitute 12000 numbers between $5000 and $100000. This presents us with a formidable

task in attempting to understand how income is distributed among the 12000 house-

holds represented in the data. The purpose of descriptive statistics is to help us make

some sense of such data. A natural way to proceed is to summarize the data by allo-

cating the numbers into classes (intervals). The number of intervals is chosen a priori

and it depends on the degree of summarization needed. Then we have the ”Table

of the personal income in Taiwan”. The first column of the table shows the income

intervals, the second column the second column shows the number of income falling

into each interval and the third column the relative frequency for each interval. The

relative frequency is calculated by dividing the number of observations in each interval

by the total number of observations. The fourth column is the cumulative frequency.

Summarizing the data in this Table enables us to get some idea of how income is dis-

tributed among various classes. If we plot the relative (cumulative) frequencies in a

bar graph we get what is known as the histogram (cumulative). That is, a histogram

is a graphical representation of the distribution of numerical data.

For further information on the distribution of income we could calculate various

numerical characteristics describing the histogram’s location, dispersion and shape.

Such measures can be calculate directly in terms of the raw data. However, in the

present case it is more convenient for expositional purpose to use the grouped data.

The main reason for this is to introduce various concept which will be reinterpreted in

the context of probability.

The mean as measure of location takes the form

z̄ =
n∑
i=1

φizi,

where φi and zi refer to the relatively frequency and the midpoint of interval i. The

mode as a measure of location refers to the value of income that occurs most fre-

quently in the data set. Another measure of location is the median referring to the

value of income in the middle when income are arranged in an ascending order ac-

cording to the size of income. The best way to calculate the median is to plot the

cumulative frequency graph.

Another important feature of the histogram is the dispersion of the relative fre-

quency around a measure of central tendency. The most frequently used measure of

dispersion is the variance defined by

v2 =
n∑
i=1

(zi − z̄)2φi,
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which is a measure of dispersion around the mean; v is known as the standard deviation.

We can extend the concept of the variance to

mk =
n∑
i=1

(zi − z̄)kφi, k = 3, 4, ...

defining what are known as higher central moments. These higher moments can be

used to get a better idea of the shape of the histogram. For example, the standardized

form of the third and fourth moments defined by

SK =
m3

v3
and K =

m4

v4
,

known as the skewness and kurtosis coefficients, measure the asymmetry and the

peakedness of the histogram, respectively. In the case of a symmetric histogram,

SK = 0 and the less peaked the histogram the greater value of K.

1.2 Looking Ahead

The most important drawback of descriptive statistics is that the study of the observed

data enables us to draw certain conclusions which relate only to the data in hand. The

temptation in analyzing the above income data is to attempt to make generalizations

beyond the data in hand, in particular about the distribution of income in Taiwan (not

just 12000 households in Taiwan). This, however, is not possible in the descriptive

statistics framework. In order to be able to generalize beyond the data in hand we

need to “model” the distribution of income in the Taiwan and not just describe the

observed data in hand. Such a general model is provided by probability theory to be

considered in Section 2.

It turns out that the model provided by probability theory owns a lot to the earlier

developed descriptive statistics. In particular, most of the concepts which form the

basis of the probability theory were motivated by the descriptive statistic concept

considered above. The concepts of measures of location, dispersion and shape, as

well as the frequency curve, were transplanted into probability theory with renewed

interpretations. The frequency curve when reinterpreted becomes a density function

purporting to model observable real world phenomena, As for the various measures,

they will now be reinterpreted in terms of the density function.
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2 Probability

Why we need the probability theory in analyzing observed data ? In the descriptive

study of data considered in the last section, it is emphasized that the results cannot be

generalized outside the observed data under consideration. Any question relating to

the population from which the observed data were drawn cannot be answered within

the descriptive statistics framework. In order to be able to do that we need the the-

oretical framework offered by probability theory. In fact, probability theory develops

a mathematical model which provides the logical foundation of statistical inference

procedures for analyzing observed data.

In developing a mathematical model we must first identify the important features,

relations and entities in the real world phenomena and then devise the concepts and

choose the assumptions with which to project a generalized description of these phe-

nomena; an idealized pictures of these phenomena. The model as a consistent mathe-

matical system has “a life of its own” and can be analyzed and studied without direct

reference to real world phenomena. (Thinks of analyzing the population, we do not

have to refer to the information in the sample.)

2.1 Interpretations of Probability

Despite the fact that the concept of probability is such a common and natural part of

our experience, no single scientific interpretation of the term “probability” is accepted

by all statisticians. Indeed the true meaning of probability is still a highly controver-

sial subject and is involved in many current philosophical discussion pertaining to the

foundations of statistics. Each of these interpretations can be very useful in applying

probability theory to practical problems.

2.1.1 The Classical Approach

In 1850s Laplace proposed what is known today as the classical definition of proba-

bility:
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Definition.
If a random experiment can result in N mutually exclusive and equally likely outcomes

and if NA of these outcomes result in the occurrences of the event A, then the probability

of A is defined by

P (A) =
NA

N
. �

The obvious limitations of the classical approach are:

(a). It is applicable to situations where there is only a finite number of possible

outcomes; and

(b). The “equally likely” condition renders the definition circular. �

Some important random experiments may give rise to s set of infinite outcomes.

And the idea of “equally likely” is synonymous with “equally probable”, thus proba-

bility is defined using the idea of probability !

2.1.2 The Frequency Approach

The most influential of the approaches suggested in an attempt to tackle the problems

posed by the classical approach are so-called frequency and subjective approaches to

probability. The frequency approach had its origins in the writing of Poisson but it

was not until the late 1920 that Von Mises put forward a systematic account of the

approach. The basic argument of the frequency approach is that probability does not

have to be restricted to situations of apparent symmetry (equally likely) since the no-

tation of probability should be interpreted as stemming from the observable stability

of empirical frequencies. For example, in the case of a fair coin we say that the proba-

bility of A = {H} is 1
2
, not because there are two equally likely outcomes but because

repeated series of large numbers of trials demonstrate that the empirical frequency of

occurrence of A “converges” to the limit 1
2

as the number of trials goes to infinity.
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Definition.
Denote nA be the number of occurrences of an event A in n trials, then if

lim
n→∞

(nA
n

)
= PA,

we say that P (A) = PA. �

2.1.3 The Subjective Approach

Despite the fact that the frequency approach seems to be an important improvement

over the classical approach, there are some obvious objections to it. “How can we gen-

erate infinite sequences of trials ?” and “What happens to phenomena where repeated

trials are not possible ?”

The subject approach to probability renders the notation of probability of a sub-

ject status by regarding it as “degree of belief” on behalf of individuals assessing the

uncertainty of a particular situation. For example, if a weatherman says that the prob-

ability of rain the next day is 0.4, he is telling the audiences his subjective belief in the

likelihood of rain the next day, given the weather conditions today. Different weather

forecasters would give different probabilities from the same present conditions, which

indicates the subjective nature of these probabilities.

2.2 The Axiomatic Approach

As was explained above, there is controversy in regard to the proper meaning and

interpretation of some of the probabilities that are assigned to the outcomes of many

experiments. However, once probabilities have been assigned to some simple outcomes

in an experiment, there is complete agreement among all authorities that the mathe-

matical theory of probability provided the appropriate methodology for further study

of these probabilities. Almost all work in the mathematical theory have been related

to the following two problems:

(a). methods for determining the probabilities of certain events from the specified

probabilities of each possible outcome of an experiment and;
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(b). methods for revising the probabilities of events when additional information is

obtained.

By the 1920s there was a wealth of results and probability began to grow into a

systematic body of knowledge. Although various people attempted a systematization of

probability it was the work of the Russian mathematician Kolmogorov which provided

to be the cornerstone for a systematic approach to probability theory. Kolmogorov

managed to relate the concept of the probability to that of a measure in integration

theory and exploited to the full analogies between set theory and the theory of functions

on the one hand and the concept of a random variable on the other. In a monumental

monograph in 1933 he proposed an axiomatization of probability theory establishing

it once and for all as part of mathematical property. There is no doubt that this

monograph provided to be the watershed for the later development of probability theory

growing enormously in importance and applicability.

Figure (2-1).

Kolmogorov, A. (1908-1987)

The axiomatic approach to probability proceeds from a set of axioms (accepted

without questioning as obvious), which are based on many centuries of human expe-

rience, and the subsequent development is built deductively using formal logical ar-

guments, like any other part of mathematics such as geometry or linear algebra. In

mathematics an axiomatic system is required to be complete, non − redundant and

consistent. By complete we mean that the set of axioms postulated should enable us

to prove every other theorem in the theory in question using the axioms and mathe-

matical logic. The notion of non-redundancy refers to the impossibility of deriving any
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axiom of the system from the other axioms. Consistency refers to the non- contradic-

tory nature of the axioms.

2.2.1 Random Experiment, Sample Space and Events

A probability model is by construction intended to be a description of a chance

mechanism giving rise to observed data. The starting point of such a model is provided

by the concept of a random experiment describing a simplistic and idealized process

giving rise to observed data.

Definition. (Random Experiment)

A random experiment, denoted by E , is an experiment which satisfies the following

conditions:

(a). all possible distinct outcomes are known a priori;

(b). In any particular trial the outcomes is not known a priori; and

(c). It can be repeated under identical conditions. �

The axiomatic approach to probability theory can be viewed as a formalization of

the concept of a random experiment. In an attempt to formalize condition (a) (of the

definition of random experiment) all possible distinct outcomes are known a priori,

Kolmogorov devised the set S which included “all possible distinct outcome” and has

to be postulated before the experiment is performed.

Definition. (Sample Space)

The sample space, denoted by S, is defined to be the set of all possible outcomes of the

experiment E . The elements of S, denoted as s, are called elementary events. That is,

s ∈ S. �

Example.
Consider the random experiment E of tossing a fair coin twice and observing the faces

r 2018 by Prof. Chingnun Lee 8 Ins.of Economics,NSYSU,Taiwan



Ch.2 Probability 2 PROBABILITY

turning up. The sample space of E is

S = {(HT ), (TH), (HH), (TT )},

with (HT ), (TH), (HH) and (TT ) being the elementary events belonging to S. �

The second ingredient of E related to (b) and in particular to the various form

events can take. A moment of reflection suggested that there is no particular reason

why we should be interested in elementary outcomes only. We might be interested in

such events as A1–“at least one H”, A2–“at most one H”, and these are not elementary

events; in particular

A1 = {(HT ), (TH), (HH)}

and

A2 = {(HT ), (TH), (TT )}

are combinations of elementary events. All such outcome are called events associated

with the same sample space S and they are defined by combining elementary events.

Definition. (Events)

Any designated collection of sample outcomes, including individual outcome (i.e. ele-

ments of S), the entire sample space, and the null set, constitutes an event.1 �

Given that S is a set with members the elementary events, this takes us immediately

into the realm of set theory and events can be formally defined to be subsets of S formed

by set theoretic operation (“∩”-intersection, “∪”-union, “−”-complementation) on the

elementary events. For example,

A1 = {(HT )} ∪ {(TH)} ∪ {(HH)} = {(TT )} ⊂ S,

A2 = {(HT )} ∪ {(TH)} ∪ {(TT )} = {(HH)} ⊂ S.
1Understanding the concept of an event is crucial for the discussion which follows. Intuitively an

event is any proposition associated with E which may occur or not at each trial. We say that event
A1 occurs when any one of the elementary events it comprises occurs. Thus, when a trial is made
only one elementary event is observed but a large number of events may have occurred. For example,
if the elementary event (HT ) occurs in a particular trial, A1 and A2 have occurred as well.
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Two special events are S itself, called the sure events and the impossible event ∅
defined to contain no elements of S, i.e. ∅ = { }; the latter is defined for completeness.

2.2.2 Set of Subsets of Sample space, σ-Field

A third ingredient of E also associated with (b) which Kolmogorov had to formal-

ized was the idea of uncertainty related to the outcome of any particular trial of E .

This he formalized in the notion of probabilities attributed to the various events as-

sociated with E , such as P (A1), P (A2), expressing the “likelihood” of occurrences

of these events. Although attributing probabilities to the elementary events presents

no particular mathematical problem, going the same for events in general is not as

straightforward. The difficulty arises because if A1 and A2 are events, A1 = S − A1,

A2 = S − A2, A1 ∩ A2, A1 ∪ A2, etc., are also events because the occurrence or non-

occurrence of A1 and A2 implies the occurrence or not of these events. This implies

that for the attribution of probabilities to make sense we have to impose some mathe-

matical structures on the set of all events, say F , which reflects the fact that whichever

way we combine these events, the end result is always an event. The temptation at

this stage is to define F to be the set of all subsets of S, called the power set. Surely,

this covers all possibilities ! In the above example, the power set of S take the form

F = {S,∅, {(HT )}, {(TH)}, {(HH)}, {(TT )}, {(HT ), (TH)},

{(HT ), (HH)}, {(HT ), (TT )}, {(TH), (HH)}, {(TH), (TT )},

{(HH), (TT )}, {(HT ), (TH), (HH)}, {(HT ), (TH), (TT )},

{(TH), (HH), (TT )}, {(HT ), (HH), (TT )}}.

Definition. (Power Set)

The set of all the subset of X is called the power set of X, denoted 2X . The power set of

a set with n elements has 2n elements, which accounts for its name and representation.�

Sometimes we are not interested in all the subsets of S, we need to define a set

independently of the power set by endowing it with a mathematical structure which

ensures that no inconsistency arises. This is achieved by requiring that F in the fol-

lowing has a special mathematical structure. It is a σ-field related to S. The idea
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behind the following definition is to specify subset of power set that are large enough

to be interesting, but whose characteristics may be more tractable. We typically do

this by choosing a base collection of sets with known properties, and then specifying

certain operations for creating new sets from existing ones. These operations permit

an interesting diversity of class members to be generated, but important properties of

the sets may be deducted from those of the base collection.

Definition. (σ-field):

Let F be a set of subsets of S. F is called a σ-field if:

(a). if A ∈ F , then A ∈ F–closure under complementation;

(b). if Ai ∈ F , i = 1, 2, ..., then (∪∞i=1Ai) ∈ F–closure under countable union.

Note that (a) and (b) taken together implying the following:

(c). S ∈ F , because A ∪ A = S;

(d). ∅ ∈ F (from (c) S = ∅ ∈ F); and

(e). Ai ∈ F , i = 1, 2, ..., then (∩∞i=1Ai) ∈ F .2 �

These suggest that a σ-field is a set of subsets of S which is closed under com-

plementation, countable unions and intersections. That is, any of these operations on

the elements of F will give rise to an element of F .

Example.
If we are interested in events with one of each H or T , there is no point in defining the

σ-field to be the power set, and Fc below can do as well with fewer events to attributed

probabilities to. Starting from the events of interest, C = {(HT ), (TH)}, we construct

the minimal σ-field generated by its elements. This can be achieved by extending C

to include all the events generated by set theoretic operations (unions, intersections,

complementations) on C. The the minimal σ-field generated by C is

Fc = {{(HT ), (TH)}, {(HH), (TT )},S,∅},
2By applying De Morgan’s laws: ∩∞i=1Ai = ∪∞i=1Ai ∈ F , therefore ∩∞i=1Ai ∈ F .
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and we denote it by Fc = σ(C). �

Definition. (Measurable Space)

The pair (S,F) is called a measurable space when F is a σ-field of S.3

Exercise 1.
Construct the minimal σ-field, FD = σ(D), generated by the event D = {(HT )}.4 �

2.2.3 Set of Subsets of R1, Borel-Field

Let us turn our attention to the various collections of events (σ-fields) that are relevant

for econometrics.

Definition. (Borel-Field on R):

The Borel σ-field B is the smallest collection of sets (called the Borel sets) that includes

(a). all the closed half-lines of R;

(b). the complements B of any B in B;

(c). the union ∪∞n=1Bi of any sequences {Bi} of sets in B. �

The Borel set of R just defined are said to be generated by the all the closed half-

lines sets of R. The same Borel sets would be generated by all the open half-lines of

R, all open sets of R , all the open intervals of R, or all the closed intervals of R. The

Borel sets are a “rich” collection of events for which probabilities can be defined. To

see how the Borel set contains almost every conceivable subset of R from the closed

half-lines, consider the following example.

3From Wikipedia: A measure on X is a function which assigns a real number to subsets of X;
this can be thought of as making precise a notion of “size” or “volume” for sets. One might like
to assign such a size to every subset of X, but the axiom of choice implies that when the size under
consideration is standard length for subsets of the real line, then there exist sets known as vitali sets for
which no size exists. For this reason, one considers instead a smaller collection of privileged subsets of
X whose measure is defined; these sets constitute the σ-algebra. Elements of the σ-algebra are called
measurable sets. An ordered pair (X, Σ), where X is a set and Σ is a σ-algebra over X, is called a
measurable space.

4Answers: FD = {{(HT )}, {(TH), (HH), (TT )},S.∅}
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Example.
Let S be the real line R = {x : −∞ < x <∞} and the set of events of interest be

J = {Bx : x ∈ R},

where Bx = {z : z ≤ x} = (−∞, x]. How can we construct a σ-field, σ(J) on R from

the events Bx?

By definition Bx ∈ σ(J), then

(a). Taking complements of Bx: B̄x = {z : z > x, z ∈ R} = (x,∞) ∈ σ(J);

(b). Taking countable unions of Bx: ∪∞n=1(−∞, x− (1/n)] = (−∞, x) ∈ σ(J);

(c). Taking complements of (b): (−∞, x) = [x,∞) ∈ σ(J);

(d). From (a), for y > x, [y,∞) ∈ σ(J);

(e). From (d), (−∞, x] ∪ [y,∞) = (x, y) ∈ σ(J);

(f). ∩∞n=1(x− (1/n), x] = {x} ∈ σ(J). �

This shows not only that σ(J) is a σ-field but it includes almost every conceivable

subset of R, that is, it coincides with the σ-field generated by any set of subsets of R,

which we denote by B, i.e. σ(J) = B, or the Borel Field on R.

Example.
The Borel sigma-field B of subsets of R is defined as a smallest sigma-field over the

system of all open subsets of R. Prove that B is also a smallest sigma-field over the

system of all half-closed intervals (a, b] with −∞ < a < b <∞.

Let B1 be the smallest sigma-field that contains all open intervals and let B2 be the

smallest sigma-field that contains all half-closed intervals. Then (a, b] = {∩(a, b+1/n) :

n ∈ N} ∈ B2 which is a countable intersection of open intervals. So (a, b] is also in B1,
as B1 contains all open intervals and is a sigma-field. Therefore B2 ⊂ B1.

On the other hand, if (a, b) is an open interval, then (a, b) = {∪(a, b − 1/n] : n ∈
N} ∈ B1 which is a countable union of half-closed intervals, so (a, b) is also in B2. Again

we conclude that B1 ⊂ B2. We conclude that B1 = B2. �

r 2018 by Prof. Chingnun Lee 13 Ins.of Economics,NSYSU,Taiwan



Ch.2 Probability 2 PROBABILITY

2.2.4 Probability Measure, Probability Space

Having solved the technical problem in attributing probabilities to events by postulat-

ing the existence of a σ- field F associated with the sample space S, Kolmogorov went

on to formalize the concept of probability itself.

Definition. (Probability Measure)

Let (S,F) be a measurable space. A mapping P(·) : F → [0, 1] is a probability measure

on (S,F) provided that

(a). P(A) ≥ 0 for ∀A ∈ F .

(b). P(S) = 1; and

(c). For any disjointed sequence {Ai} of sets in F (i.e., Ai ∩ Aj = ∅ for all i 6= j),

P(∪∞i=1Ai) =
∑∞

i=1P(Ai).
5 �

To summarize the arguments so far, Kolmogorov formalized the condition (a) and

(b) of the random experiment E in the form of the trinity (S,F ,P(·)) comprising the set

of all outcomes S–the sample space, a σ-field F of events related to S and a probability

function P(·) assigning probability to events in F . For the coin example, if we choose

F (The first is H and the second is T )= {{(HT )}, {(TH), (HH), (TT )},∅,S} to be

the σ-field of interest, P(·) is defined by

P(S) = 1, P(∅) = 0, P({(HT )}) =
1

4
, P({(TH), (HH), (TT )}) =

3

4
.

Because of its importance the trinity (S,F ,P(·)) is given a name.

5The first two axioms seem rather self-evident and are satisfied by both the classical as well as
frequency definitions of probability. Hence, in some sense, the axiomatic definitions of probability
“overcome” the deficiencies of the other definitions by making the interpretation of probability dis-
pensable for mathematical model to be built. The third axioms is less obvious, stating that the
probability of the union of unrelated events must be equal to the addition of their separate probabil-
ities. For example, since {(HT )} ∩ {(HH)} = ∅,

P({(HT )} ∪ {(HH)}) = P({(HT )}) + P({(HH)})

=
1

4
+

1

4
=

1

2
.

Again this coincides with the “frequency interpretation” result.
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Definition. (Probability Space):

A sample space S endowed with a σ-field F and a probability measure P(·) is called a

probability space. That is we call the triple (S,F ,P) a probability space. �

Finally, as far as condition (c) of E is concerned, yet to be formalized, it will prove

of paramount importance in the context of the limit theorems in Chapter 4.

2.3 Conditional Probability

So far we have considered probabilities of events on the assumption that no information

is available relating to the outcome of a particular trial. Sometimes, however, additional

information is available in the form of the known occurrence of some event A. For

example, in the case of tossing a fair coin twice we might know that in the first trial it

was heads. What difference does this information make to the original triple (S,F ,P)

?

Firstly, knowing that the first trial was a head, the set of all possible outcomes now

becomes

SA = {(HT ), (HH)},

since (TH), (TT ) are no longer possible. Secondly, the σ-field taken to become6

FA = {∅, {(HT )}, {(HH)},SA}.

Thirdly the probability measure function become

PA(SA) = 1, PA(∅) = 0, PA({(HT )}) =
1

2
, PA({(HH)}) =

1

2
.

Thus, knowing that event A-one H has occurred in the first trial transformed the

original probability space (S,F ,P) to the conditional probability space (SA,FA,PA).

The question that naturally arises is to what extent we can derive the above conditional

probabilities without having to transform the original probability space. The following

formula provides us with a way to calculate the conditional probability.

6Since SA = {(HT ), (HH)}, therefore (HT ) = (HH) and (HH) = (HT ).
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Definition. (Conditional Probability)

Let A1 and A be any two events defined on S such that P(A) > 0. The conditional

probability of A1, assuming that A has already occurred, is written as

PA(A1) = P(A1|A) =
P(A1 ∩ A)

P(A)
. �

Example.
Let A1 = {(HT )} and A = {(HT ), (HH)}, then since P(A1) = 1

4
, P(A) = 1

2
, P(A1 ∩

A) = P({(HT )}) = 1
4
,

PA(A1) = P(A1|A) =
1/4

1/2
=

1

2
,

as above. �

Using the above rule of conditional probability we can deduce that

P(A1 ∩ A2) = P(A1|A2) · P(A2)

= P(A2|A1) · P(A1) for A1, A2 ∈ F .

This is called the multiplication rule.

Moreover, when knowing that A2 has occurred does not change the original proba-

bility of A1, i.e.

P(A1|A2) = P(A1),

we say that A1 and A2 are independent. The following definition gives a necessary and

sufficient condition for two events to be independent.

Definition. (Independence)

Two events A1 and A2 are said to be independent if P(A1 ∩ A2) = P(A1) · P(A2).
7 �

Independence is very different from mutual exclusiveness in the sense that A1 ∩
A2 = ∅ but P(A1|A2) 6= P(A1) and vice versa can both arise. Independence is

a probabilistic statement which ensures that the occurrence of one event does not

7To see this, recall that P(A1|A2) = P(A1∩A2)
P(A2)

= P(A1) when they are independent.
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influence the occurrence (or non-occurrence) of the other event. On the other hand,

mutual exclusiveness is a statement which refers to the events (set) themselves not the

associated probability. Two events are said to be mutually exclusive when they cannot

occur together.
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3 Random Variable and Its Distribution

The model based on (S,F ,P) does not provide us with a flexible enough framework

because the sample space are not expressed in numbers as in the real world outcome.

The basic idea underlying the construction of (S,F ,P) was to set up a framework for

studying probability of events as a prelude to analyse problem involving uncertainty.

One facet of E which can help us suggest a more flexible probabilities space is the fact

when the experiment is performed the outcome is often considered in relation to some

quantifiable attribute; i.e. an attribute which can be repressed in numbers. It turns

out that assigning numbers to qualitative outcome make possible a much more flexible

formulation of probability theory. This suggests that if we could find a consistent way

to assign numbers to outcomes we might be able to change (S,F ,P) to something

more easily handled. The concept of a random variable is designed to just that with-

out changing the underlying probabilistic structure of (S,F ,P).

3.1 The Concept of a Random Variable

Let us consider the possibility of defining a function X(·) which maps S directly into

the real line R, that is,

X(·) : S → RX ,

assigning a real number x1 to each s1 in S by x1 = X(s1), x1 ∈ R, s1 ∈ S. The question

arises as to whether every function from S to Rx will provided us with a consistent

way of attaching numbers to elementary events; consistent in the sense of preserving

the event structure of the probability space (S,F ,P). The answer, unsurprisingly, is

not. This is because, although X is a function defined on S, probabilities are assigned

to events in F and the issue we have to face is how to define the value taken by X for

the different elements of S in a way which preserves the event structures of F . What

we require from X−1(·) or (X) is to provide us with a correspondence between Rx and

S which reflects the event structures of F , that is, it preserves union, intersections and

complements. In other word for each subset N of Rx, the inverse image X−1(N) must

be an event in F . This prompts us to define a random variable X to be any function

satisfying this event preserving condition in relation to some σ-field defined on Rx;

for generality we always take the Borel field B on R.
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Definition. (Random Variable)

A random variable X is a real valued function from S to R which satisfies the condition

that for each Borel set B ∈ B on R, the set X−1(B) = {s : X(s) ∈ B, s ∈ S} is an

event in F . �

Example.
Define the function X—“the number of Heads in these two trial”, then X({HH}) = 2,

X({TH}) = 1, X({HT}) = 1, and X({TT}) = 0. Further we see that X−1(2) =

{(HH)}, X−1(1) = {(TH), (HT )} and X−1(0) = {(TT )}. In fact, it can be shown

that the σ-field related to the random variables, X, so defined is

FX = {S,∅, {(HH)}, {(TT )}, {(TH), (HT )}, {(HH), (TT )},

{(HT ), (TH), (HH)}, {(HT ), (TH), (TT )}}.

We can verify that X−1({0}) ∪ {1}) = {(HT ), (TH), (TT )} ∈ FX , X−1({0}) ∪ {2}) =

{(HH), (TT )} ∈ FX and X−1({1}) ∪ {2}) = {(HT ), (TH), (HH)} ∈ FX . �

Example.
Consider the random variable Y—“the number of Head in the first trial”, then Y ({HH}) =

Y ({HT}) = 1, and Y ({TT}) = Y ({TH}) = 0. However Y does not preserve the event

structures of FX since Y −1({0}) = {(TH), (TT )} is not an event in FX and so does

Y −1({1}) = {(HH), (HT )}. �

From the two examples above, we see that the question “X(·) : S → RX is a

random variable ?” does not make any sense unless some σ-field F is also specified. In

the case of the function X–number of heads, in the coin-tossing example we see that

it is a random variable relative to the σ-field FX . This, however, does not preclude

Y from being a random variable with respect to some other σ-field FY ; for instance

FY = {S,∅, {(HH), (HT )}, {(TH), (TT )}}. Intuition suggests that for any real value

function X(·) : S → R we should be able to define a σ-field FX on S such that X is

a random variable. The concept of a σ-field generated by a random variable enables

us to concentrate on particular aspects of an experiment without having to consider

everything associated with the experiment at the same time. Hence, when we choose to
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define a random variable and the associated σ-field we make an implicit choice about

the features of the random experiment we are interested in.

How do we decide that some function X(·) : S → R is a random variables relative

to a given σ-field F ? From the discussion of the σ-field σ(J) generated by the set

J = {Bx : x ∈ R} where Bx = (−∞, x] we know that B = σ(J) and if X(·) is such

that

X−1((−∞, x]) = {s : X(s) ∈ (−∞, x], s ∈ S} ∈ F for all (−∞, x] ∈ B,

then

X−1(B) = {s : X(s) ∈ B, s ∈ S} ∈ F for all B ∈ B.

In other words, when we want to establish that X is a random variables we have

to look no further than the half-closed interval (−∞, x], and the σ-field σ(J) they

generate, whatever the range Rx. Let us use the shorthand notation {X(s) ≤ x}
instead of {s : X(s) ∈ (−∞, x], s ∈ S} to the above “numbers of Heads ” example,

X−1((−∞, x]) = {s : X(s) ≤ x}

=


∅ x < 0,

{(TT )} x = 0,
{(TT )(TH)(HT )} x = 1,

{(TT )(TH)(HT )(HH)} x = 2.

we can see that X−1((−∞, x]) ∈ FX for all x ∈ R and thus X(·) is a random variables

with respect to FX .8 We thus have the following equivalent definitions of random vari-

able.

Definition. (Random Variable)

A real valued function X defined on the probability space (S,F ,P) is called a random

variable if the set {s : X(s) ≤ x} ∈ F for every x ∈ R. �

A random variable X relative to F maps S into a subset of the real line, and

the Borel field B on R plays now the role of F . In order to complete the model we

need to assign probabilities to the elements B of B. Common sense suggests that

the assignment of the probabilities to the event B ∈ B must be consistent with the

8To see this, since it is known that {(TT )} ∈ FX , therefore {(TT )} = {(TH)(HT )(HH)} ∈ FX .
Hence {(TH)(HT )(HH)} ∩ {(TT )(TH)(HT )} = {(TH)(HT )} ∈ FX . Finally, {(TH)(HT )} =
{(TT ), (HH)} ∈ FX .
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probabilities assigned to the corresponding events in F . Formally, we need to define a

set function on the Borel-field PX(·) : B → [0, 1] such that

PX(B) = P(X−1(B)) ≡ P(s : X(s) ∈ B, s ∈ S) for all B ∈ B.

In the above “number of Heads” example,

PX({0}) = 1/4 = P({TT}), PX({1}) = 1/2 = P({HT}) + P({TH}), PX({2}) =

1/4 = P({HH}) and Px({0} ∪ {1}) = 3/4.

The question which arises is whether, in order to define the set function PX(·), we

need to consider all the elements of the Borel field B. The answer is that we do not need

to do that because, as argued above, any such element of B can be expressed in terms

of the semi-closed intervals (−∞, x]. This implies that by choosing such semi-closed

intervals “intelligently”, we can define PX(·) with the minimum of effort. For example,

we may define:

PX((−∞, x]) =



0 x < 0,

1
4

x = 0,

3
4

x = 1,

1 x = 2.

As we can see, the semi-closed intervals were chosen to divide the real line at the

points corresponding to the value taken by X. This way of defining the semi-closed

intervals is clearly non-unique but will prove very convenient in the next subsection.

In fact, the event and probability structure of (S,F ,P(·)) is preserved in the in-

duced probability space (R,B, PX(·)). We traded S, a set of arbitrary elements, for R,

the real line; F a σ-field of subset of S with B, the Borel field on the real line; and

P(·) a set function defined on arbitrary sets with PX(·), a set function on semi-closed

intervals of the real line.

3.2 The Distribution and Density Functions

In the previous section the introduction of the concept of a random variable X, enables

us to trade the probability space (S,F ,P(·)) for (R,B, PX(·)) which has a much more
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convenient mathematical structure. The latter probability space, however, is not as

yet simple enough because PX(·) is still a set function albeit on real line intervals. In

order to simplify it we need to transform it into a point function with which we are so

familiar. Define a point function

F (·) : RX → [0, 1],

which is seemingly, only a function of x. In fact, however, this function will do exactly

the same job as PX(·). Heuristically, this is achieved by defining F (·) as a point function

by

PX((−∞, x]) = F (x)− F (−∞), for all x ∈ R,

and assigning the value zero to F (−∞).

Definition. (Distribution Function):

Let X be a random variable defined on (S,F ,P(·)). The point function F (·) : RX →
[0, 1] defined by

F (x) = PX((−∞, x]) = Pr(X ≤ x), for all x ∈ R

is called the distribution function of X and satisfied the following properties:

(a). F (x) is non-decreasing;

(b). F (−∞)=limx→−∞F (x) = 0 and F (∞)=limx→∞F (x) = 1,

(c). F (x) is continuous from the right.9 (i.e. limh→0F (x+ h) = F (x), ∀x ∈ R.) �

The great advantage of F (·) over P(·) and PX(·) is that the former is a point function

and can be represented in the form of an algebraic formula; the kind of functions we

are so familiar with in elementary mathematics.

Discrete random variables are conceptually easy to define: for experiments whose

sample space are either finite or countably infinite. However, continuous random vari-

ables need to approached in a more roundabout fashion.

Definition. (Discrete Random Variable)

A random variable X is called discrete if its range RX is some subsets of the set of

9A function f : D → R is left-continuous at x = a if limx→a− f(x) = f(a). It is right-continuous
at x = a if limx→a+ f(x) = f(a).
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integers Z = {0,±1,±2, ...}. �

Definition. (Continuous Random Variable)

A random variable X is called continuous if its distribution function F (x) is continuous

for all x ∈ R and there exists a non-negative function fX(·) on the real line such that

F (x) =

∫ x

−∞
fX(u)du, ∀x ∈ RX . �

In defining the concept of a continuous r.v. we have introduced the function fX(x)

which is directly related to F (x).

Definition. (Probability Density Function)

Let F (x) be the density function of the random variable X. The non-negative function

f(x) defined by

F (x) =

∫ x

−∞
fX(u)du, ∀x ∈ RX ; (when X is a continuous random variable)

or

F (x) =
∑
u≤x

fX(u), ∀x ∈ RX ; (when X is a discrete random variable)

is said to be the probability density function (pdf) of X. The pdf satisfies the following

properties:

(a). fX(x) ≥ 0, ∀x ∈ RX ;

(b).
∫∞
−∞ fX(x)dx = 1;

(c). Prob(a < X < b) =
∫ b
a
fX(x)dx;

(d). fX(x) = d
dx
F (x), at every point where the distribution function is continuous. �

Although we can use the distribution function F (x) as the fundamental concept of

our probability model we prefer to adopt the density function fX(x) instead, because

we gain in simplicity and added intuition. It enhance intuition to view density function

as distribution probability mass over the range of X.
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Example.
Let X be uniformly distributed in the interval [a, b] and we write X ∼ U(a, b). The

DF of X takes the form:

F (x) =


0 x < a,
x−a
b−a a ≤ x < b,

1 x ≥ b.

The corresponding pdf of X is given by

f(x) =

{
1
b−a a ≤ x ≤ b,

0 elsewhere.

3.3 Numerical Characteristics of Random Variables

Probability density function provide a global overview of a random variable’s behav-

ior. If X is discrete, fX(x), gives P (X = x) for all x; if X is continuous, and A is

an interval, or countable union of intervals, P (X ∈ A) =
∫
A
fX(x)dx. Detail that

explicit, though, is not always necessary-or even helpful. There are times when a more

prudent strategy is to focus the information contained in fX(x) by summarizing cer-

tain of its features with a numerical characteristics. Furthermore, in modeling real

phenomena using probability model of the form Φ = {f(x;θ),θ ∈ Θ} we need to be

able to postulate such models having only a general quantitative description of the

random variable in question at our disposal a priori. Such information comes in the

form of these numerical characteristics of random variables such as the mean, the vari-

ance, the skewness and kurtosis coefficients and higher moments. Indeed, sometimes

such numerical characteristics actually determine the type of probability density in

Φ. Moreover, the analysis of density functions is usually undertaken in terms of these

numerical characteristics. The search for these numerical characteristics is what the

remainder of this section is primarily about.
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3.3.1 Mathematical Expectation

The first feature of a pdf that we will examine is central tendency, a term referring to

the “average” value of a random variable.

Definition. (Mean)

The mean (expected value or expectation) of X denoted by E(X) is defined by

E(X) =

∫ ∞
−∞

xf(x)dx−−for a continous r.v,

and

E(X) =
∑
i

xif(xi)−−for a discrete r.v,

when the integral and sum exist. We always denote E(X) = µ. �

Example.
If X ∼ U(a, b), i.e. X is uniformly distributed r.v., then

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ b

a

x

(
1

b− a

)
dx =

1

2

(
1

b− a

)
x2
∣∣∣∣b
a

=
a+ b

2
. �

In the above example the mean of the r.v. X exists. The condition which guarantees

the existence of E(X) is that

E|X| =
∫ ∞
−∞
|x|f(x)dx <∞. (since E(X) ≤ E|X|)

Example.
One example where the mean does not exist is the cases of a Cauchy distributed r.v.

with a pdf given by

fX(x) =
1

π(1 + x2)
, x ∈ R,
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then the expectation of X would be

E|X| =
∫ ∞
−∞

xfX(x)dx =

∫ ∞
−∞

x

π(1 + x2)
dx

=
log(1 + x2)

π

∣∣∣∣∞
−∞

= ∞− (−∞),

which is indeterminate. In this case we say that is E(X) doesn’t exist for the Cauchy

distribution. �

Results.
Some properties of the expectation are

(a). E(c) = c, if c is a constant.

(b). E(aX1+bX2) = aE(X1)+bE(X2) for any two r.v.’s X1 and X2 whose mean exist

and a, b are real constants.

(c). Let X be a random variable such that E|X| <∞, then for every ε > 0, Pr(|X| ≥
ε) ≤ E|X|

ε
. This is the so called the Markov Inequality. �

3.3.2 The Variance

The expected value is a good enough measure of central tendency, but it still leaves

out some critical information about a random variable’s behavior. Unless we are also

provided with some indication of how “spread out” a random variable’s probability

density function, the expected value by itself can be misleading. One seemingly rea-

sonable approach would be to average, in generalized sense, the squared deviations the

values of X from their expected value.

Definition. (The Variance)

Related to the mean as a measure of location is the dispersion measure called the
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variance and defined by

V ar(X) = E[X − E(X)]2

=

∫ ∞
−∞

(X − µ)2f(x)dx

= E(X2)− µ2

≡ σ2. �

Note that the square root of the variance is referred to as standard deviation.

Example.
Let X ∼ U(a, b), then

V ar(X) =

∫ ∞
−∞

[
X −

(
a+ b

2

)]2(
1

b− a

)
dx =

(b− a)2

12
. �

Results.
Some properties of the variance are:

(a). V ar(c) = 0 for any constant c.

(b). V ar(aX + b) = a2 V ar(X), for constant a and b.

(c). Pr(|X − E(X)| ≥ ε) ≤ [V ar(X)]/ε2 for ε > 0. This is the so called the Cheby-

shev’s Inequality. �

3.3.3 Higher Moments

The quantities we have identified as the mean and the variance are actually special

cases of what are referred to more generally as a random variable’s moment. Specially,

E(X) is the first moment about the origin and σ2, the second moment about the mean.

As the terminology suggests, we will have occasion to define even “higher” moments

of X.
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Definition.
(a). r-th Row Moments is the moment of inertia from x = 0 defined by:

µ′r ≡ E(Xr) =

∫ ∞
−∞

xrf(x)dx, r = 0, 1, 2, ..,

(b). r-th Central Moments is defined as the moment around x = µ:

µr ≡ E(X − µ)r =

∫ ∞
−∞

(x− µ)rf(x)dx, r = 0, 1, 2, ... �

Example.
These higher moments are sometimes useful in providing us with further information

relating to the distribution and density function of r.v.’s. In particular, the 3rd and

4th central moments, when standardized in the form:

α3 =
µ3

σ3

and

α4 =
µ4

σ4

are referred to measure of skewness and kurtosis and provided us with measures of

asymmetry and flatness of peak, respectively. �

3.4 Some Univariate Distribution

3.4.1 The Normal Distribution

Finding probability distribution to describe empirical data is one of the most important

contribution a statistician can make to the research scientist. By far the most widely

used probability model in statistics is the normal distribution.
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Definition.
A random variable X, x ∈ R, is normally distributed if its probability density function

is given by

f(x;µ, σ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
, µ ∈ R, σ2 ∈ R+. (2-1)

We often express this by X ∼ N(µ, σ2).10 �

Figure (2-2). The Normal Distribution.

As far as the shape of the normal distribution and density function are concerned

we note the following characteristics.

Results. .

(a). The normal density is symmetric about µ, i.e.

f(µ+ k) =
1

σ
√

2π
exp

{
− k2

2σ2

}
= f(µ− k)

⇒ Pr(µ ≤ X ≤ µ+ k) = Pr(µ− k ≤ X ≤ µ), k > 0,

10The notation here is θ = [µ σ2]′ and Θ = [R R+]′.
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and for the distribution function,

F (−x) = 1− F (x+ 2µ).

(b). The density function attains its maximum at x = µ,

df(x)

dx
= f(x)

(
−2(x− µ)

2σ2

)
= 0⇒ x = µ, and f(µ) =

1

σ
√

2π
.

(c). The density function has two points of inflection at x = µ+±σ:

d2f(x)

dx2
=

σ−3√
2π
exp

{
− 1

2σ2
(x− µ)2

}[
1− (x− µ)2

σ2

]
= 0 ⇒ x = µ± σ.�

A special case of normal distribution, which becomes the most useful of all proba-

bility distribution, is the one with µ = 0 and σ2 = 1.

Definition.
The density function of the random variable Z,

f(z) =
1√
2π
exp

{
−1

2
z2
}
,

which does not depend on the unknown parameters µ, σ. This is called the standard

normal distribution, which we write in this form, Z ∼ N(0, 1). �

Exercise 2.
Show that∫ ∞

−∞

1√
2π
exp

(
−z2

2

)
dz = 1. � (2-2)
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3.4.2 Exponential Family of Distribution

A continuous random variable X has a gamma distribution with parameters η and λ,

written

f(x) =
λη

Γ(η)
e−λxxη−1, x ≤ 0, λ > 0, η > 0.

Many familiar distributions are special cases, including the exponential (η = 1), and

chi-squared (λ = 1/2, η = n/2).

3.5 The Notation of a Probability Model

In a continuous random variable, it is impossible to get the pdf f(x) from the random

experiment E directly (either it is costly or is impossible to know all X), we have to

assume a (parametric) probability distribution to model a particular real phenomenon

by previous experience in modeling similar phenomenon or by a preliminary study of

the data.

By a parameterized probability model, we may transform the original uncertainty

related to E to uncertainty related to unknown parameters θ of f(·); in order to

emphasize this we write the pdf as f(x;θ). We are now in a position to define our

probability model in the form of parametric family of density function which we denote

by

Φ = {f(x;θ), θ ∈ Θ}.

Φ represents a set of density functions indexed by the unknown parameters θ which

are assumed to belong to a parameter space Θ.

Example.
The Pareto distribution:

Φ =

{
f(x; θ) =

θ

x0

(x0
x

)θ+1

, x > x0, θ ∈ Θ

}
,

x0–a known number, Θ ∈ R+–the positive real line. For each value θ in Θ, f(x; θ)

represents a different density. �
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When a particular parameter family of densities Φ is chosen, as the appropriate

probability model for modeling a real phenomenon, we are in effect assuming that the

observed data available were generated by the “chance mechanism” described by one

of those density in Θ. The original uncertainty relating to the outcome of a particular

trial of the experiment has now been transformed into the uncertainty relating to

the choice of one θ in Θ, say θ∗ which determines uniquely the one density, that

is, f(x;θ∗), which gives rise the observed data. The task of estimating θ∗ or testing

some hypotheses about θ∗ using the observed data lies with statistical inference in next

following chapters.
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4 Random Vector and Its Distribution

The probability model formulated in the previous chapter was in the form of a para-

metric family of densities associated with a random variable X : Φ = {f(x; θ), θ ∈ Θ}.
In practice, however, there are many observable phenomena where the outcome comes

in the form of several quantitative attributes. For example, data on personal income

might be related to number of children, social class, type of occupation, age class, etc.

In order to be able to model such real phenomena we extend a single r.v.’s framework

to one for multidimensional r.v.’s or random vectors, that is,

x = (X1, X2, ..., Xk)
′,

where each Xi, i = 1, 2, ..., k measures a particular quantifiable attribute of the random

experiment’s (E) outcome.

4.1 Joint Distribution and Density functions

Consider the random experiment E of tossing a fair coin twice. Define the function

X1(·) to be the number of heads and X2(·) to be the number of tails. The function

(X1(·), X2(·)) : S → R2 is a two dimensional vector function which assigns to each

elements s of S, the pair of ordered numbers (x1, x2) where x1 = X1(s), x2 = X2(s).

Definition.
A (bivariate) random vector x(·) is a vector function

x(·) : S → R2,

such that for any two real numbers (x1, x2) ≡ x, the event

x−1((−∞,x]) = {s : −∞ < X1(s) ≤ x1, −∞ < X2(s) ≤ x2, s ∈ S} ∈ F . �

The random vector induces a probability space (R2,B2, Px(·)), where B2 (≡ B×B)

are Borel subsets on the plane and Px(·) a probability set function defined over events
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in B2, in a way which preserves the probability structure of the original probability

space (S,F ,P(·)). This is achieved by attributing to each B ∈ B2 the probability

Px(B) = P({s : (X1(s), X2(s)) ∈ B})

or

Px((−∞,x]) = Pr(X1 ≤ x1, X2 ≤ x2).

We can go a step further to reduce the step function PX(·) to a point function

F (x1, x2), we call the joint (cumulative) distribution function.

Definition.
Let x ≡ (X1, X2)

′ be a random vector defined on (S,F ,P(·)). The function defined by

F (·, ·) : R2 → [0, 1],

such that

F (x) ≡ F (x1, x2) = PX((−∞,x]) = Pr(X1 ≤ x1, X2 ≤ x2) ≡ Pr(x ≤ x)

is said to be the joint distribution function of x. �

Example.
In the coin-tossing example above, the random vector x(·) takes the value (1, 1),

(2, 0),(0, 2) with probability 1
2
, 1
4

and 1
4
, respectively. In order to derive the joint dis-

tribution (DF) we have to define all the events of the form {s : X1(s) ≤ x1, X2(s) ≤
x2, s ∈ S} for all (x1, x2) ∈ R2:

{s : X1(s) ≤ x1, X2(s) ≤ x2, s ∈ S}

=


∅ x1 < 0, x2 < 0,
{TT} x1 = 0, x2 = 2,

{(TT ), (TH), (HT )} x1 = 1, x2 = 2,
S x1 = 2, x2 = 2.
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The joint distribution function of X1 and X2 is given by

F (x1, x2) =



0 x1 < 0, x2 < 0,

1
4

x1 = 0, x2 = 2,

3
4

x1 = 1, x2 = 2,

1 x1 = 2, x2 = 2.

�

Definition.
The joint distribution of X1 and X2 is called continuous if there exists a non-negative

function f(x1, x2) such that

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f(u, v)du dv,

where the function f(x1, x2) is called the joint density function of X1 and X2. �

Results.
The joint density function f(x1, x2) implies the following properties:

(a).
∫∞
−∞

∫∞
−∞ f(x1, x2)dx1 dx2 = 1.

(b). Pr(a < X1 ≤ b, c < X2 ≤ d) =
∫ b
a

∫ d
c
f(x1, x2)dx1 dx2.

(c). f(x1, x2) = ∂2

∂x1∂x2
F (x1, x2), if f(·) is continuous at (x1, x2). �

Example. (Bivariate Normal Distribution)

A 2× 1 random vector x = (X1, X2)
′ is said to follow a bivariate normal distribution,

if their joint density function can be written as

f(x1, x2;θ) =
(1− ρ2)−1/2

2πσ1σ2

exp

{
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2
]}

,

x1, x2 ∈ R, and θ = (µ1, µ2, σ
2
1, σ

2
2, ρ) ∈ R2×R2

+× [0, 1]. Here, E(Xi) = µi, V ar(Xi) =

σ2
i , i = 1, 2; and Cov(X1, X2) = ρ. �
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Figure (2-3). Bivariate Normal Distribution

The extension of the concept of a random variable X to that of a random vector

x = (X1, X2, ..., Xn)′ enables us to generalize the probability model

Φ = {f(x;θ), θ ∈ Θ}.

to that of a parametric family of joint density functions

Φ = {f(x1, x2, ..., xn;θ), θ ∈ Θ}.

This is a very important generalization since in most applied disciplines, the real

phenomena to be modeled are usually multidimensional in the sense that there is more

than one quantifiable features to be considered.

Notation.
We are now in a right position to clarify our notations used in this handouts.

(A). For nonstochastic cases:

(a). a,x,y etc.: is an element, (1× 1).

(b). a,x,y: is a column vector, (n× 1).
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(c). A,X,Y: is a matrix, (m× n).

B. For stochastic cases:

(a). 1× 1:

(i). X: random variable;

(ii). x: the value that X takes;

(iii). fX(x): the “probability” that the random variable X takes on the

value x.

(b). n× 1:

(i). x = (X1, X2, ..., Xn)′: random vector;

(ii). x = (x1, x2, ..., xn)′: the value that x takes;

(iii). fx(x):is the (joint) probability that (X1, X2, ..., Xn)′ takes on the val-

ues x = (x1, x2, ..., xn).

(c). X, Λ etc.: matrix (such as the regressors matrix and the variance- covariance

matrix). �

4.2 Marginal Distributions

Let x ≡ (X1, X2)
′ be a bivariate random vector defined on (S,F ,P) with a joint dis-

tribution function F (x1, x2). The question which naturally arises is whether we could

separate X1 and X2 and consider them as individual random variables. The answer to

this question leads us to the concept of a marginal distribution.

Definition. (Marginal Distribution)

The marginal distribution functions of X1 and X2 are defined by

F1(x1) = limx2→∞F (x1, x2).

and

F2(x2) = limx1→∞F (x1, x2). �
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Having separated X1 and X2 we need to see whether they can be considered as

single r.v.’s defined on the same probability space. In defining a random vector we

imposed the condition that

{s : X1(s) ≤ x1, X2(s) ≤ x2} ∈ F .

The definition of the marginal distribution we used the event

{s : X1(s) ≤ x1, X2(s) ≤ ∞},

which we know belong to F . This event, however, can be written as the intersection

of two sets of the form

{s : X1(s) ≤ x1} ∩ {s : X2(s) ≤ ∞}

but the second set is S i.e. {s : X2(s) ≤ ∞} = S,

which implies that

{s : X1(s) ≤ x1} ∩ {s : X2(s) ≤ ∞} = {s : X1(s) ≤ x1},

which indeed belongs to F and it is the condition needed for X1 to be a r.v. with a

probability function F1(x1); the same is true for X2.

Definition. (Marginal Density Function)

The marginal density functions of X1 and X2 are defined (from standard iterated

Riemann integrals on Cells) 11 by

f1(x1) =

∫ ∞
−∞

f(x1, x2)dx2

and

f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1. �

11By definition, F1(x1) = F (x1,∞) =
∫ x1

−∞
∫∞
−∞ f(u, v)dvdu. So f(x1) =

∫∞
−∞ f(u, v)dv.
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Example.
For the random vector (X1, X2)=(no. of heads, no. of tails) above, the marginal density

of f1(x1) is “recovered” from

f1(0) = f(0, 1) + f(0, 1) + f(0, 2) = 0 + 0 + 1/4 = 1/4,

f1(1) = f(1, 0) + f(1, 1) + f(1, 2) = 0 + 1/2 + 0 = 1/2,

f1(2) = f(2, 0) + f(2, 1) + f(2, 2) = 1/4 + 0 + 0 = 1/4. �

4.3 Independence of Random Variable

The concept of independent events that was introduced in section 2.3 leads quite nat-

urally to a similar definition for independent random variables.

Definition.
Random variables X and Y are said to be independent if for all sets A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A) · P (Y ∈ B). �

A more workable characterization of this definition is provided in next Theorem.

Theorem.
Two random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x) · fY (y)

for all x and y. Independence in terms of the distribution function takes the same

form

F (x, y) = F (x) · F (y). �
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It is quite obvious that knowing the joint density function of X1 and X2, we can

derive their marginal density functions; the reverse, however, is not true in general.

Knowledge of f(x1) and f(x2) is enough to derive f(x1, x2) only when X1 and X2 are

independent: f(x1, x2) = f(x1) · f(x2).

Result.
Let g : Rk → Rl be a continuous function. If z and y be independent, then g(z) and

g(y) are also independent.

Proof.
Let A1 = [z : g(z) ≤ a1] and A2 = [y : g(y) ≤ a2]. Then Fg(z)g(y)(a1, a2) ≡ P [g(z) ≤
a1, g(y) ≤ a2] = P [z ∈ A1,y ∈ A2] = P [z ∈ A1] ·P [y ∈ A2] = P [g(z) ≤ a1] ·P [g(y) ≤
a2] = Fg(z)(a1)Fg(y)(a2) for all a1, a2 ∈ Rl. Hence g(z) and g(y) are independent. �

4.4 Conditional Distributions

We have seen that the probability of independent event have their random variable

counterparts. Another of these carryovers is the notion of conditional probability, or in

what will be our terminology, a conditional probability density function. That is, in this

section we consider the question of simplifying probability models Φ by conditioning

with respect to some subsets of the r.v.’s.

In the context of the probability space (S,F ,P(·)) the conditional probability of

event A1 given event A2 is defined by

P(A1|A2) =
P(A1 ∩ A2)

P(A2)
, P(A2) > 0; A1, A2 ∈ F .

Definition.
By using an analogous definition in term of distribution function, we define the condi-
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tional density of X1 given X2 = x2 to be

fX1|X2(x1|x2) =
f(x1, x2)

f2(x2)
, x1 ∈ Rx1 .

Similarly, the conditional density of X2 given X1 = x1 is

fX2|X1(x2|x1) =
f(x1, x2)

f1(x1)
, x2 ∈ Rx2 ,

provided f1(x1) > 0 and f2(x2) > 0.12 �

Example.
LetX and Y have joint density function f(x, y) = y/10, (x, y) = (1, 1), (1, 2), (1, 3), (2, 1),

(2, 2), (3, 1). Then X has marginal density fX(1) = f(1, 1) + f(1, 2) + f(1, 3) = 6
10

,

fX(2) = f(2, 1) + f(2, 2) = 3
10

, and fX(3) = f(3, 1) = 1
10

. Therefore the conditional

density function of Y given x = 1 is

fY |X(1|1) =
f(1, 1)

fX(1)
=

1/10

6/10
=

1

6
,

fY |X(2|1) =
f(1, 2)

fX(1)
=

2/10

6/10
=

2

6
,

fY |X(3|1) =
f(1, 3)

fX(1)
=

3/10

6/10
=

3

6
.

Similarly, the conditional density of Y given X = 2 is

fY |X(1|2) =
f(2, 1)

fX(2)
=

1/10

3/10
=

1

3
,

fY |X(2|2) =
f(2, 2)

fX(2)
=

2/10

3/10
=

2

3
. �

Results.

(a) . The conditional density is a proper density function, i.e. for a given X2 = x̆2,

(i). fX1|X2(x1|x̆2) ≥ 0;

(ii).
∫∞
−∞ fX1|X2(x1/x̆2)dx1 = 1.

12However, the mathematical apparatus needed to bypass the problem that in a continuous random
variable, X1 and X2, f1(x1) = f2(x2) = 0. This definition of conditional density does not make sense.
See Billingsley (1979), p.354-407)
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(b) . Knowledge of all these conditional densities is equivalent to knowledge of joint

density, i.e.

f(x1, x2) = fX1|X2(x1|x2) · f2(x2)

= fX2/X1(x2|x1) · f1(x1), (x1, x2) ∈ R2.

(c) . An immediate implication of last equation is that if X1 and X2 are independent,

then

fX1|X2(x1|x2) = f1(x1), x1 ∈ Rx1 . �

Exercise 3.
Let X = (X1, X2, X3) be a continuous random vector having joint density

f(x1, x2, x3) = 6 exp(−x1 − x2 − x3), 0 < x1 < x2 < x3.

Find marginal pdf of f(x2) and the conditional density ofX3 given (X1, X2) = (x1, x2).�
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5 The General Notation of Expectation

In section 3.3 we considered the notation of mathematical expectation in the context

of the simple probability model

Φ = {f(x; θ), θ ∈ Θ}

as an useful characteristic of density functions of a single random variables. Since then

we have generalized the probability model to

Φ = {f(x1, x2, ..., xk; θ), θ ∈ Θ}

and put forward a framework in the context of which joint density functions can be an-

alyzed. These include marginalisation, conditioning and functions of random variables.

The purpose of this section is to consider the notation of expectation in the context of

this more general framework. For simplicity of exposition we consider the case where

k = 2.

5.1 Expectation of a Marginal Random Variable

The expectation of a marginal random variable from a joint density is just as the

definition

E(X1) =

∫
x1fX1(x1)dx1 =

∫
x1

(∫
fX1 X2(x1 x2)dx2

)
dx1

=

∫ ∫
x1fX1 X2(x1 x2)dx2dx1.

We can generalize the above result to the expectation of a random vector.

Definition.
The expectation of the random vector E(x) is just the vector that collecting all the

expectation of marginal (individual) random variables, i.e.

E(x) =


E(X1)
E(X2)

...
E(Xk)

 =


µ1

µ2
...
µk

 = µ �
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5.2 Expectation of a Function of Random Variables

Let (X1, X2) be a bivariate random vector with fx(x1, x2) their joint density function

and let h(·) : R2 → R be a Borel function. Define Y = h(X1, X2) and consider its

expectation. This can be defined in two equivalent ways:

(a).

E(Y ) =

∫ ∞
−∞

fY (y)dy;

(b).

E(Y ) = E(h(X1, X2)) =

∫ ∞
−∞

∫ ∞
−∞

h(x1, x2)f(x1, x2)dx1dx2.

5.2.1 Forms of h(X1, X2) of Particular Interest

A particular form of h(X1, X2) we are interested is in the following.

Definition.
For h(X1, X2) = (X1 − E(X1))

l(X2 − E(X2))
k, where

µ1 = E(X1) and µ2 = E(X2).

Then

µlk ≡ E(h(X1, X2)) = E
[
(X1 − E(X1))

l(X2 − E(X2))
k
]

=

∫ ∞
−∞

∫ ∞
−∞

(X1 − µ1)
l(X2 − µ2)

kf(x1, x2)dx1dx2
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are called joint central moment of order l + k. �

Two especially interesting joint central moments are the covariance and variance:

(a) Covariance: when l = k = 1,

Cov(X1, X2) = E((X1 − µ1)(X2 − µ2)) = E(X1X2)− E(X1) · E(X2).

(b) Variance: when l = 2, k = 0 or l = 0, k = 2,

V ar(X1) = E(X1 − µ1)
2, or

V ar(X2) = E(X2 − µ2)
2.

Definition.
Using definition of covariance and variance we could define the correlation coefficient

by

Corr(X1, X2) =
Cov(X1, X2)√

[V ar(X1) · V ar(X2)]
,

which has the properties that −1 ≤ Corr(X1, X2) ≤ 1. �

Theorem.
If X1 and X2 are independent then Cov(X1, X2) = 0, and the converse is not true. �

Result.
For a linear function

∑
i aiXi the variance is of the form

V ar

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2iV ar(Xi) +
∑
i 6=j

∑
aiajCov(XiXj),

where ai are real constant. �
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5.2.2 Properties of Expectation

(a). Linearity: E[ah1(X1, X2) + bh2(X1, X2)] = aE(h1(X1, X2)) + bE(h2(X1, X2)),

where a and b are constant and h1(·), h2(·) are Borel functions from R2 to R. In

particular E (
∑n

i=1 aiXi) =
∑n

i=1 aiE(Xi).

(b). If X1 and X2 are independent r.v.’s, for every Borel function h1(·), h2(·): R→ R,

E(h1(X1)h2(X2)) = E(h1(X1)) · E(h2(X2)),

given that the above expectations exist.

5.3 Conditional Expectation

Conditional expectation is one of the most useful concepts in probability. It plays a

very important role in extending the probability to time dependent random variables

and linear regression models.

Definition.
The conditional expectation of X1 given that X2 takes a particular value x2(X2 = x2)

is defined by

E(X1|X2 = x2) =

∫ ∞
−∞

x1fX1|X2(x1, x2)dx1,

and is a function of x2. In general for any Borel function h(·) whose expectation exist

E(h(X1)|X2 = x2) =

∫ ∞
−∞

h(x1)fX1|X2(x1, x2)dx1. �

Example.
LetX and Y have joint density function f(x, y) = y/10, (x, y) = (1, 1), (1, 2), (1, 3), (2, 1),

(2, 2), (3, 1). Then X has marginal density fX(1) = 6
10

, fX(2) = 3
10

, and fX(3) =
1
10

. Therefore the conditional density function of Y given x = 1 is fY |X(1|1) =
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1
6
, fY |X(2|1) = 2

6
, fY |X(3|1) = 3

6
, and conditional density function of Y given x = 2 is

fY |X(1|2) = 1
3
, fY |X(2|2) = 2

3
. Therefore the condition expectation of Y given x = 1 is

E(Y |x = 1) = 1 · fY |X(1|1) + 2 · fY |X(2|1) + 3 · fY |X(3|1)

= 1 · 1

6
+ 2 · 2

6
+ 3 · 3

6

=
7

3
,

and the condition expectation of Y given x = 2 is

E(Y |x = 1) = 1 · fY |X(1|2) + 2 · fY |X(2|2)

= 1 · 1

3
+ 2 · 2

3

=
5

3
.

�

5.3.1 Properties of the Conditional Expectation

Let X, X1, and X2 be random variables on (S,F ,P), then we have the following

properties of conditional expectation.

(a). E[a1h(X1) + a2h(X2)|X = x] = a1E[h(X1)|X = x] + a2E[h(X2)|X = x], a1, a2 is

constants.

(b). If X1 ≥ X2, E(X1|X = x) ≥ E(X2|X = x).

(c). E[h(X1, X2)|X2 = x2] = E[h(X1, x2)|X2 = x2].

(d).** E[h(X1)|X2 = x2] = E[h(X1)] if X1 and X2 are independent.

(e). E[h(X1)] = EX2{E[h(X1)|X2 = x2]}, this is so called law of iterated expectation.

(f). The conditional expectation E(X1|X2 = x2) is a non-stochastic function of x2,

i.e. E(X1| ·) : RX2 → R. The graph (x2, E(X1|X2 = x2)) is called the regression

curve.

(g). E[h(X1) · g(X2)|X2 = x2] = g(x2)E[h(X1)|X2 = x2].
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5.3.2 Higher Conditional Moments

As is the case of ordinary expectation, we can define higher conditional moments.

Definition.

(a). Raw conditional moments:

E(Xr
1 |X2 = x2) =

∫ ∞
−∞

xr1fX1|X2(x1, x2)dx1, r ≥ 1,

(b). Central conditional moments :

E[(X1 − E(X1|X2 = x2))
r|X2 = x2], r ≥ 2. �

5.4 Conditional Variance

Of particular interest of the higher conditional moments in last section is the conditional

variance, sometimes called skedasticity.

A conditional variance is the variance of the conditional distribution:

V ar(Y |x) = E{[Y − E(Y |x)]2|x}

=

∫
y

[Y − E(Y |x)]2f(y|x)dy, if y is continuous

=
∑
y

[Y − E(Y |x)]2f(y|x), if y is discrete.

The computation can be simplified by using

V ar(Y |x) = {[Y − E(Y |x)]2|x}

= E{Y 2 − 2Y · E(Y |x) + [E(Y |x)]2|x}

= E(Y 2|x)− 2[E(Y |x)]2 + [E(Y |x)]2

(Since E{2Y · E(Y |x)|x} = 2[E(Y |x)]2)

= E(Y 2|x)− [E(Y |x)]2.
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Theorem. (Decomposition of Variance):

V ar(Y ) = V arx[E(Y |x)] + Ex[V ar(Y |x)].

Proof.
From definition

V arx[E(Y |x)] = Ex{E(Y |x)− Ex[E(Y |x)]}2

= Ex{E(Y |x)− E(Y )}2 (Since Ex[E(Y |x)] = E(Y ))

= Ex{[E(Y |x)]2 − 2E(Y |x)E(Y ) + [E(Y )]2

= Ex[E(Y |x)]2 − 2EXE(Y |x)E(Y ) + Ex[E(Y )]2

= Ex[E(Y |x)]2 − [E(Y )]2,

and

Ex[V ar(Y |x)] = Ex{E(Y 2|x)− [E(Y |x)]2}

= E(Y 2)− Ex[E(Y |x)]2.

Therefore

V ar(Y ) = E(Y 2)− [E(Y )]2

= {Ex[E(Y |x)]2 − [E(Y )]2}+ {E(Y 2)− Ex[E(Y |x)]2}

= V arx[E(Y |x)] + Ex[V ar(Y |x)]. �

Exercise 7.
Show that in a bivariate normal distribution, V ar(X1|X2 = x2) = σ2

1(1− ρ2). That is

the conditional variance is free of the conditional variables—homoskedastic. �
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6 Function of Random Variables

One of the most important problems in probability theory and statistical inference is

to derive the distribution of a function h(X1, X2, ..., Xk) when the distribution of the

random vector x = (X1, X2, ..., Xk) is known. In cases such as these it is inefficient to

compute the pdf of the “new” random variables by returning to elementary principles.

Easier methods are available. This problem is important for at least two reasons:

(a). it is often the case that in modeling observable phenomena we are primarily

interested in function of random variables; and

(b). in statistical inference the quantities of primary interest are commonly functions

of random variables.

It is no exaggeration to say that the whole of statistical inference is based on our

ability to derive the distribution of various functions of r.v.’s.

6.1 (Single) Function of One Random Variable (“One ⇒ One”
Transformation)

We now derive a general method which is often helpful for deriving the density function

of the transformed random variable without first finding the distribution function.

Let X be a random variable on the probability space (S,F ,P(·)). By definition,

X(·) : S → R is a real valued function. Suppose that h(·) : R → R, where h is a con-

tinuous function with at most a countable number of discontinuities. More formally

we need h(·) to be a Borel function.

Definition.
A function h(·) : Rx → R is said to be a Borel function if any a ∈ R and x ∈ Rx, the

set Bh = {h(x) ≤ a} is a Borel set, i.e. Bh ∈ B, where B is the Borel field on R. �

The above definition is to require that h(·) is a Borel function that is an obvious

condition to impose given that we need h(X) to be a random variable itself.
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Having ensured that the function h(·) of the r.v. X is itself a r.v. Y = h(X), we

want to derive the distribution of Y when the distribution of X is known. In general,

the distribution of Y is defined as

F (y) = P (s : Y (s) ≤ y) = P (s : X(s) ∈ h−1((−∞, y])).

Theorem.
Let X be a continuous r.v. and Y = h(X) where h(X) is differentiable for all x ∈ Rx

and [dh(x)]/(dx) > 0 or [dh(x)]/(dx) < 0 for all x. Then the density function of Y is

given by

fY (y) = fX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ for a < y < b,

where | | stands for the absolute value and a and b refer to the smallest and biggest

value y can take, respectively. �

Example.
Let X ∼ (N(µ, σ2) and Y = (X − µ)/σ, which implies that [dh(x)]/(dx) = 1/σ > 0

for all x ∈ R since σ > 0 by definition; h−1(y) = σy + µ and [dh−1(y)]/(dy) = σ. Thus

since

fX(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}
,

therefore,

fY (y) =
1

σ
√

2π
exp

{
−1

2

(
σy + µ− µ

σ

)2
}
· (σ)

=
1

σ
√

2π
exp

(
−1

2
y2
)
,

i.e. Y ∼ N(0, 1) the standard normal distribution. �

In cases where the conditions of the theorem above are not satisfied we need to

derive the distribution from the relationship

FY (y) = Pr(h(x) ≤ y) = Pr(X ∈ h−1((−∞, x])).
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Exercise 4.
Let X ∼ N(µ, σ2). Find pdf of Y , where Y = X2. �

6.2 (Single) Function of Several Random Variables (“k ⇒ one”
Transformation)

As in the case of a simple r.v., for a Borel function h(·) : Rn → R and a random vector

x = (X1, X2, ..., Xn), h(x) is a random variable. Three commonly used functions of

random variables (take two random variables as example) are:

(a). The distribution of X1 +X2,

(b). The distribution of X1/X2,

(c). The distribution of Y=min(X1, X2).

Exercise 5.
Let Xi ∼ U(−1, 1), i = 1, 2, 3 and Y = X1 +X2 +X3. Find pdf of Y . �

6.3 Functions of Several Random Variables (“k ⇒ k” Transformation)

After considering various simple functions of r.v.’s separately, let us consider them to-

gether.

Theorem.
Let x = (X1, X2, ..., Xk)

′ be a random vector with a joint probability density function
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fx(x1, x2, ..., xn) and define the n-to-n transformation:

Y1 = h1(X1, X2, ..., Xk)

Y2 = h2(X1, X2, ..., Xk)
...

Yk = hk(X1, X2, ..., Xk),

whose inverse take the form h−1i (·) = gi(·), i = 1, 2, ..., n, that is,

X1 = g1(Y1, Y2, ..., Yn)

X2 = g2(Y1, Y2, ..., Yn)
...

Xn = gn(Y1, Y2, ..., Yn).

Assume:

(a) hi(·) and gi(·) are continuous;

(b) the partial derivatives ∂Xi/∂Yi, i, j = 1, 2, ..., k exist and are continuous; and

(c) the Jocobian of the inverse transformation

J = det

(
∂(X1, X2, ..., Xk)

′

∂(Y1, Y2, ..., Yk)

)
= det

(
∂(h−11 (y), h−12 (y), ..., h−1n (y))′

∂(Y1, Y2, ...Yk)

)
6= 0.

Then

f(y1, y2, ..., yk) = f(g1(y1, y2, ..., yk)), ..., gn(y1, y2, ..., yk)) · |J| . �

Example.
Let x = (X1, X2)

′, where X1 and X2 are independent random variables that have the

standard normal distribution. Here, the density of x is the product of the density

function of X1 and X2. Thus

fx(x1, x2) =
1

2π
exp

[
−1

2
(x21 + x22)

]
, −∞ < x1, x2 <∞.

Let y = [Y1, Y2]
′ be defined as Y1 = X1 + X2 and Y2 = X1 − 2X2. In this case,

h1(x) = X1 + X2 = Y1, h2(x) = X1 − 2X2 = Y2, h
−1
1 (y) = 2Y1 + Y2 = X1, h

−1
2 (y) =

1
3
(Y1 − Y2) = X2, and

J = det

[
∂(X1, X2)

′

∂(Y1, Y2)

]
= det

[
∂(h−11 (y), h−12 (y))′

∂(Y1, Y2)

]
= det

[
2
3

1
3

1
3
−1

3

]
= −1

3
.
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Hence the density of y is

fy(y1, y2) =
1

2π
exp

[
−1

2

(
2y1 + y2

3

)2

− 1

2

(
y1 − y2

3

)2
]
× 1

3

=
1

6π
exp

[
− 1

18
(5y21 + 2y1y2 + 2y22)

]
, −∞ < y1, y2 <∞. �

Exercise 6.
Let Xi ∼ N(0, 1), i = 1, 2 be two independent r.v.’s and Y1 = h1(X1, X2) = X1 + X2,

Y2 = h2(X1, X2) = X1

X2
. Find joint pdf of f(Y1, Y2) and marginal density of f1(y1) and

f2(y2). �

6.4 Functions of Normally Distributed Random Variables**

The above example on functions of random variables show clearly that deriving the

distribution of h(X1, ..., Xn) when f(x1, ..., xn) is known is not an easy exercise. An

important generalization of the results involving normal random variables will be sum-

marized below for reference.

6.4.1 Univariate Normal

Definition.
We say that X ∼ N(µ, σ2), if the probability density of Y is

f(x;µ, σ2) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (2-3)

�

Results.
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(a). Z =
[
1
σ
· (X − µ)

]
∼ N(0, 1).–the standard normal distribution.

(b). If Xi ∼ N(µi, σ
2
i ), i = 1, 2, ..., k are independent r.v.’s then(

k∑
i=1

Xi

)
∼ N

(
k∑
i=1

µi,

n∑
i=1

σ2
i

)
.−− Reproductive Property.

�

6.4.2 Chi-Square Distribution

Definition.
We say that Y ∼ χ2(k) if the density function of Y is

fY (y; k) =
1

2(k/2)Γ(k/2)
y(k/2)−1e−(y/2), y > 0, k = 1, 2, .. �

It is easy to see that E(Y ) = k and V ar(Y ) = 2k.

Figure (2-4). χ2(k) Distribution
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Results.
(a). If Xi ∼ N(0, 1), i = 1, 2, ..., k are independent r.v.’s then(

k∑
i=1

X2
i

)
∼ χ2(k)−−chi-square with k degree of freedom.

(b). If Y1, Y2, ..., Yk are independent r.v.’s Yi ∼ χ2(ki), i = 1, 2, ..., k, then(
k∑
i=1

Yi

)
∼ χ2(k1 + k2 + · · ·+ kk). �

6.4.3 Student t-Distribution

Definition.
We say that W ∼ t(k) if the density function of W is

fW (w; k) =
1√
(kπ)

Γ
(
k+1
2

)
Γ
(
k
2

) 1(
1 + w2

k

)[(k+1)/2]
k > 0, w ∈ R. �

It is easy to see that

E(W ) = 0, V ar(W ) =
k

k − 2
, k > 2, µ′4 = 3 +

6

k − 4
, k ≥ 4.

These moments show that for a large n the t-distribution is very close to the standard

normal.

Result.
If X1 ∼ N(0, 1) and X2 ∼ χ2(k) are independent r.v.’s then

X1√
(X2/k)

∼ t(k). �
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Figure (2-5). t(k) Distribution

6.4.4 F-Distribution

Definition.
We say that U ∼ F (n1, n2) if the density function of U is

fU(u;n1, n2) =
Γ
(
n1+n2

2

) (
n1

n2

)n1/2

Γ
(
n1

2

)
· Γ
(
n2

2

) u
1
2
(n1−2)(

1 + n1

n2
u
) 1

2
(n1+n2)

, u > 0. �

It is easy to see that

E(U) =
n2

n2 − 2
, n > 2, V ar(U) =

2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
, n2 > 4.

Result.
If X1 ∼ χ2(n1) and X2 ∼ χ2(n2) are independent r.v.’s then

(X1/n1)

(X2/n2)
∼ F (n1, n2). �
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Figure (2-6). F (n1, n2) Distribution
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7 Generating Functions

7.1 The Moment-Generating Function

Finding moments of a random variable, particularly the higher moments is concep-

tually straightforward but can be difficult to accomplish in practice. Fortunately, an

alternative method is available. For some densities, we can find a moment-generating

function. Moment-generating functions can also be extremely useful in deriving the

distribution of a sum of independent random variables. Such problems are important

in statistics (for example, estimators from a linear function of the sample) and typically

difficult.

Definition. (Moment-Generating Function):

Let X be a continuous random variable with a cumulative distribution function FX(x).

We define the kth raw moment of X by E(Xk), and the moment-generating function

of X by

M(t) = E(etX) =

∫ ∞
−∞

etxdFX(x) =

∫ ∞
−∞

etxfX(x)dx, (2-4)

where t is a scalar. The convergence of the integral in (3) depends on the choice of the

scalar t.13 �

In applied mathematics courses, the moment-generating function is called the Laplace

transform of the density function of X. The moment-generating function does not have

any obvious meaning by itself, but we shall see that it is very useful for doing distri-

bution theory. The most basic property of the moment-generating function is that it

generates the moments.

Theorem.

Let M (k)(t) = dk

dtk
M(t). If M(t) exists, then E(Xk) is finite for all k, and

E(X) = M ′(0), E(X2) = M ′′(0),

and in general,

E(Xk) = M (k)(0). �

13See Khuri, p.251 for example.
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Proof.
We assume that X is a continuous random variable with range S. Note that

∂k

∂tk
etx = xketx.

Using the method of differentation under the integral sign14 we have

M (k)(t) =
dk

dtk

∫
S

etxf(x)dx =

∫
S

∂k

∂tk
(etxf(x))dx =

∫
S

xketxf(x)dx = E(Xketx).

Therefore,

M (k)(0) = E(Xke0) = E(Xk). �

To generate moments is just only one of many uses we shall have for moment-

generating functions. Most of the other uses depend on the following important two

theorems.

Theorem. (Uniqueness Theorem):

Let X and Y be random variables that have the same moment-generating functions.

Then X and Y have the same distribution.

Proof.
See Arnold p. 115. �

This theorem implies that a random variable’s moment generating function com-

pletely determines its distribution. We can now describe the distribution of a random

variable in one of four ways: by defining P (X ∈ A) for all A, by giving the distribution

function of X, by giving the density of X, or by giving the moment-generating function

of X.

Theorem.

14See Khuri, p.301.
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(a). Let X be a random variable with moment-generating function MX(t). Let U =

aX + b for constant a and b. Then U has moment-generating function

MU(t) = ebtMX(at).

(b). LetX1, ..., Xn be independent random variables such thatXi has moment-generating

unction Mi(t). Let V =
∑

iXi and W =
∑

i aiXi + b. Then V and W have

moment-generating functions

MV (t) =
∏
i

Mi(t) and MW (t) = ebt
∏
i

Mi(ait).

(c). Let X1, ..., Xn be independent random variables with the same distribution and

with common moment-generating unction M(t). Then V =
∑

iXi has moment-

generating function

MV (t) = [M(t)]n.

Proof.
(a). MU(t) = E(etU) = E(et(aX+b)) = E(etaX+tb) = etbE(e(at)X) = etbMX(at).

(b). V is a special case of W . So we have

MW (t) = E(etW ) = E
(
et(
∑
aiXi+b)

)
= etbE

(
taiXi∏)

= etb
∏

E(e(ai)Xi) = etb
∏

Mi(ait).

(c). This result follows directly from part (b). �

From the foregoing theorem, we see that it is often easy to find the moment-

generating function of a linear combination W from the individual moment-generating

functions. If we can recognize the moment-generating function, then we have found

the distribution of W , because of the uniqueness theorem. As we shall see in chapter

4, when the moment-generating function approach to finding an induced distribution

works, it is the easiest method to use.

Finally, a function that is typically easier to differentiate that M(t) is called the

cumulant-generating function
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Definition. (Cumulant-Generating Function)

Let X be a continuous random variable with a moment generating function M(t). The

cumulant-generating function ϕ(t) of X is defined as

ϕ(t) = ln(M(t)). �

Theorem.
The mean and variance of X are respectively given by

µ = ϕ′(0) and σ2 = ϕ′′(0).

Proof.
The first derivative ϕ′(t) = M ′(t)/M(t), and the second derivative ϕ′′(t) = [M ′′(t)M(t)−
(M ′(t))2]/(M(t))2. Now, M(0) = 1, M ′(0) = µ, and M ′′(0) = E(X2). Therefore,

ϕ′(0) = µ/1 = µ, and ϕ′′(0) = [E(X2) · 1− µ2]/12 = E(X2)− µ2 = σ2. �

7.2 The Joint Moment-Generating Function

The moment-generating function of a random variable can be extended to the joint

moment-generating function for a random variables.

Definition. (Joint Moment-Generating Function):

Let x = (X1, ..., Xn)′ be a random vector. Let t = (t1, ..., tn)′. The joint moment-

generating function of x is

M 1×1(t) = M(t1, ..., tn) = E

(
exp

[∑
i

tiXi

])
= E(exp(t′x)). �
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We first state how the moment-generating function generates the moment of x.

Theorem.
Let

Mi(t) =
∂

∂ti
M(t), Mii(t) =

∂2

∂t2i
M(t), Mij(t) =

∂2

∂ti∂tj
M(t).

If the moment-generating function M(t) of x exists, then

E(Xi) = Mi(0), E(X2
i ) = Mii(0), and E(XiXj) = Mij(0).

Proof.
Note that

∂

∂ti
exp

(∑
i

Xiti

)
= Xi exp

(∑
i

tiXi

)
= Xi exp(t′x).

Using the method of differentation under the integral sign15 we have

Mi(t) =
∂

∂ti

∫
S

et′xf(x)dx =

∫
S

∂

∂ti
(et′xf(x))dx =

∫
S

Xie
t′xf(x)dx = E(Xie

t′x).

Therefore,

Mi(0) = E(Xie
0) = E(Xi).

Similarly,

∂2

∂ti∂tj
exp

(∑
i

Xiti

)
= XiXj exp

(∑
i

tiXi

)
= XiXj exp(t′x).

Using the method of differentation under the integral sign16 we have

Mij(t) =
∂2

∂ti∂tj

∫
S

et′xf(x)dx =

∫
S

∂2

∂ti∂tj
(et′xf(x))dx

=

∫
S

XiXje
t′xf(x)dx

= E(XiXje
t′x).

Therefore,

Mij(0) = E(XiXje
0) = E(XiXj). �

15See Khuri, p.301.
16See Khuri, p.301
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The following definition is a direct extension of cumulant-generating function of a

single random variable.

Definition. (Joint Cumulant-Generating Function):

Let x be a continuous random variable with a moment generating function M(t). The

cumulant-generating function ϕ(t) of X is defined as

ϕ(t) = ln(M(t)). �

Theorem.
Let ϕ(t) = ln(M(t)). Then

E(Xi) = ϕi(0), V ar(Xi) = ϕii(0), Cov(XiXj) = ϕij(0),

where ϕij are defined analogously to Mij. �

The following theorem states that a random vector’s joint moment generating func-

tion completely determines its distribution.

Theorem. (Uniqueness Theorem):

Let x and y be n-dimensional random vectors. If x and y have the same joint moment-

generating function, the x and y have the same distribution. �

Theorem. (Marginal Moment-Generating Function):

Let x = (y′, z′)′, where y and z are random vectors. Let t = (u′,v′)′, where u and v

have the same dimension as y and z. Suppose that x has moment-generating function

Mx(t). Then

(a). y and z have marginal moment-generating functions

My(u) = Mx(u,0) and Mz(v) = Mx(0,v).
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(b). y and z are independent if and only if

Mx(u,v) = My(u)Mz(v).

Proof.

(a).

Mx(t) = Mx[(u′,v′)′] = E[exp(t′x)] = E[exp(u′y + v′z)].

Therefore, by definition

My(u) = E[exp(u′y)] = E[exp(u′y + v′0)] = Mx(u,0).

The proof for Mz(v) is similar.

(b). Suppose that y and z are independent. Then

Mx[(u′,v′)′] = E[exp(u′y + v′z)] = E [exp(u′y) · exp(v′z)]

= [E(exp(u′y))] [E(exp(v′z))]

= My(u)Mz(v). �

Part(a) of this theorem says that to find the marginal moment-generating function

of a subset of x, we just put zeros in the moment-generating function for the t’s

associated with the variables that are not in the subset. Note that to find the marginal

density function from the joint density function, we have to integrate out the variables

that we do not want. Obviously, it is considerably easier to substitute zeros into a

function than to integrate out variable, so that we shall often use the joint moment-

generating function to find marginal distribution.

Part (b) of this theorem says that y and z are independent if and only if the

marginal moment-generating function factor into the product of the marginal moment

generating functions. We have already seen that y and z are independent if and only if

the probability function factors into the product of the marginal probability functions

and that they are independent if and only if the joint density function factors into the
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product of marginal density functions.

7.3 The Characteristic Function

We have seen that the moment generating function MX(t) for a random variable X

can be used to obtain the moments of X. It may be recalled, however, that MX(t) may

not be defined for all values of t. To generate all the moments of X, it is sufficient for

MX(t) to be defined in a neighborhood of t = 0. Some well-known distributions do not

have moment generating functions, such as the Cauchy distribution. Another function

that generate the moments of a random variable in a manner similar to MX(t), but is

defined for all values of t and for all random variables, is the characteristic function.

Definition. (Characteristic Function):

The characteristic function of a continuous random variable X, denoted by CX(t),17 is

CX(t) = E[eitX ]

=

∫ ∞
−∞

eitxf(x)dx

= E[cos(Xt)] + iE[sin(Xt)],

where f(x) is the probability density function of X, and i is the complex number√
−1. �

Because

−1 ≤ cos(Xt) ≤ 1, −1 ≤ sin(Xt) ≤ 1.

Therefore∫ ∞
−∞
| cos(Xt)f(x)dx ≤

∫ ∞
−∞

f(x)dx = 1∫ ∞
−∞
| sin(Xt)f(x)dx ≤

∫ ∞
−∞

f(x)dx = 1,

17By Demoivre’s theorem, eia = cos(a) + i sin(a).
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that is, E[cos(Xt)] and E[sin(Xt)] are both finite, and hence CX(t) is finite for all t for

any random variable X. In applied mathematics, the characteristic function is often

called the Fourier transform of the density function.

The characteristic function and the moment generating function, when the latter

exists, are related according to the formula

CX(t) = MX(it).

Furthermore, it can be shown that if X has finite moment, then they can be obtained

by repeatedly differentiating CX(t) and evaluating the derivatives at zero, as is shown

in the following theorem.

Theorem.
Let

C
(k)
X (t) =

dk

dtk
CX(t),

then

E(Xk) =
1

ik
C

(k)
X (0).

Proof.
We assume that X is a continuous random variable with range S. Note that

∂k

∂tk
eitx = ikxketx.

Using the method of differentiation under the integral sign18 we have

C
(k)
X (t) =

dk

dtk

∫
S

eitxf(x)dx =

∫
S

∂k

∂tk
(eitxf(x))dx

=

∫
S

ikxketxf(x)dx = ikE(Xketx).

Therefore,

1

ik
C

(k)
X (0) = E(Xke0) = E(Xk). �

18See Khuri, p.301.
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Theorem. (Uniqueness Theorem):

IfX and Y have the same characteristic function, then they have the same distribution.�

Result.
Let Y and Z be independent. Then if X = Y + Z, then

CX(t) = CY (t) · CZ(t). (2-5)

Proof.

CX(t) = E(exp(itX)) = E(exp(it(Y + Z)))

= E(exp(itY ) exp(itZ))

= E((exp(itY ))E(exp(itZ))

by independence. Hence CX(t) = CY (t) · CZ(t). �

The definition of characteristic function can be extended to a random vector.

Definition.
The characteristic function of a random k × 1 random vector x, denoted by Cx(t), is

Cx(t) = E[exp(it′x)],

where t is k × 1 real vector. �

Theorem.

(a). Let X ∼ N(µ, σ2). Then CX(t) = exp
(
itµ− t2σ2

2

)
.

(b). Let x ∼ Nk(µ,Σ). Then Cx(t) = exp
(
it′µ− t′Σt

2

)
. �
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Example. (The Characteric Function of the Standard Normal Distribution)

The characteristic function of the standard normal distribution with the density func-

tion

f(x) =
1√
2π
e−x

2/2, −∞ < x <∞,

is

CX(t) =
1√
2π

∫ ∞
−∞

e−x
2/2eitxdx

=
1√
2π

∫ ∞
−∞

e−
1
2
(x2−2itx)dx

=
e−t

2/2

√
2π

∫ ∞
−∞

e−
1
2
(x−it)2dx

= e−t
2/2. �
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8 Multivariate Normal distribution

The multivariate normal distribution is by far the most important distribution in sta-

tistical inference for a variety of reasons including the fact that some of the statistics

based on sampling from such a distribution have tractable distributions themselves. Be-

fore we consider the multivariate normal distribution, however, let us introduce some

notations and various simple results related to random vectors and their distributions

in general.

8.1 The First Two Moments of A Multivariate Distribution

Let x ≡ (X1, X2, ..., Xk)
′ be an k × 1 random vector defined on the probability space

(S,F ,P(·)). The mean vector E(x) is defined by

E(x) =


E(X1)
E(X2)
.
.
.

E(Xk)

 ≡

µ1

µ2

.

.

.
µk

 ≡ µ, an k × 1 vector,

and the covariance matrix Cov(x) by

Cov(x) = E(x− µ)(x− µ)′

=


V ar(X1) Cov(X1, X2) . . . Cov(X1, Xk)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xk)
. . . . . .
. . . . . .
. . . . . .

Cov(Xk, X1) Cov(Xk, X2) . . . V ar(Xk)



=


σ2
1 σ12 . . . σ1k

σ21 σ2
2 . . . σ2k

. . . . . .

. . . . . .

. . . . . .
σk1 σk2 . . . σ2

k

 = E(xx′)− µµ′ ≡ Σ,

where Σ is an k × k symmetric positive definite matrix.
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By dividing σij by σiσj, we obtain the correlation matrix:

R =


1 ρ12 . . . ρ1k
ρ21 1 . . . ρ2k
. . . . . .
. . . . . .
. . . . . .
ρk1 ρk2 . . . 1

 ,

where ρij = σij/σiσj.

Results.
If x has mean µ and covariance Σ, then for z = Ax + b,

(a). E(z) = AE(x) + b = Aµ+ b;

(b).

Cov(z) = E[(Ax + b− (Aµ+ b))(Ax + b− (Aµ+ b))′]

= AE(x− µ)(x− µ)′A′ = AΣA′. �

8.2 The Multivariate Normal Distribution

Definition.
Let x ≡ (X1, X2, ..., Xk)

′ be an k × 1 random vector with E(x) = µ and Cov(x) = Σ.

If the joint density of x is in the form of

f(x;µ,Σ) = (2π)−k/2|Σ|−1/2 exp(−1/2)(x− µ)′Σ−1(x− µ), (2-6)

then we say that x follows a multivariate normal distribution, denoted as x ∼ Nk(µ,Σ).�

Exercise 8.
Let R be the correlation matrix of x, shows that the density function of a multivariate

normal x can also expressed as

f(x) = (2π)−k/2(σ1σ2 · · · σk)−1|R|−1/2 exp(−1/2)ε′R−1ε, (2-7)
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where εi = (xi − µi)/σi, i = 1, 2, ..., k. �

Three special cases of multivariate normal distribution are of interest.

(a). If all the variables are uncorrelated, then σij = 0 for i 6= j. Thus R = I, and the

density in (2-7) becomes

f(x) = f(x1, x2, ..., xk) = (2π)−k/2(σ1σ2 · · · σk)−1 exp(−1/2)ε′ε (2-8)

= f(x1)f(x2) · · · f(xk) =
k∏
i=1

f(xi),

where f(xi) ∼ N(µi, σi). That is, if normally distributed variables are uncorre-

lated, then they are independent.

(b). If µ = 0 and σ2
i = σ2 then Xi

i.i.d.∼ N(0, σ2) and εi = xi/σ, and the density in

(2-8) becomes

f(x) = (2π)−k/2(σ2)−k/2 exp(−1/2σ2)x′x. (2-9)

(c). If σ2 = 1 then (2-9) becomes

f(x) = (2π)−k/2 exp(−1/2)x′x. (2-10)

This is the multivariate standard normal distribution.

8.2.1 Marginal and Conditional Normal Distributions

In this section we find that the marginal and conditional distribution derived from a

multivariate normal distribution are also normal.

Theorem.
Let x1 be any subset of the random vector x, including a single variable, and let x2 be

the remaining variables. Partition µ and Σ likewise so that

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then
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(a). If (x1,x2)
′ have a joint multivariate normal distribution, then the marginal dis-

tribution are also normal, i.e.

x1 ∼ N(µ1,Σ11)

and

x2 ∼ N(µ2,Σ22).

(b). The conditional distribution of x1 given x2 = x2 is normal as well:

x1|(x2 = x2) ∼ N(µ1.2,Σ11.2)

where

µ1.2 = µ1 + Σ12Σ
−1
22 (x2 − µ2),

Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21. �

8.2.2 Linear Function of a Normal Random Vector

Any linear function of a vector of joint normally distributed variables is also normally

distributed.

Theorem.
If x ∼ Nk(µ,Σ), then Ax ∼ N(Aµ,AΣA′).

Proof.
Consider y = Ax, where A is q × k. Let t be q × 1, then

Cy(t) = E(exp(it′y)) = E[exp(it′Ax)]

= E[exp(iλ′x)]

= Cx(λ),
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where λ = A′t. Hence if x ∼ Nk(µ,Σ),

Cy(t) = Cx(λ) = exp

(
iλ′µ− λ

′Σλ

2

)
= exp

(
it′Aµ− t

′AΣA′t

2

)
,

so that y = Ax ∼ N(Aµ,AΣA′). �

Corollary.
If x ∼ Nk(µ,Σ), then A(x− µ) ∼ N(0,AΣA′). �

8.2.3 Quadratic Forms Related to the Normal Distribution

The multivariate normal vector in a quadratic form is very important in deriving the

distribution of a test statistics for statistical inference in a later chapter. We collect

two useful results here.

Theorem. (Distribution of an idempotent quadratic form)

Let x ∼ Nk(µ, σ
2In), then for A an idempotent symmetric matrix, we have (x−µ

σ
)′A(x−µ

σ
) ∼

χ2(tr A).

Proof.
Let z = x−µ

σ
. It is easy to see that z ∼ N(0, I). Let A be arranged in a diagonal

matrix Λ and an orthogonal matrix C such that A = CΛC′ and that C′C = I. Then

the quadratic form

q =

(
x− µ
σ

)′
A

(
x− µ
σ

)
= z′CΛC′z = y′Λy,

where y = C′z. Because z ∼ N(0, I), and C′C = I. It follows that

y = C′z ∼ N(0,C′IC) ≡ N(0, I).

Hence the quadratic form

q = y′Λy =
k∑
i=1

λiy
2
i .
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Because A is idempotent, λi is always 0 or 1, then

q =
J∑
i=1

y2i ∼ χ2(J),

where J is the trace of A. �

Example.
Let Xi ∼ i.i.d N(0, 1), then

∑k
i=1(Xi − X̄)2 = x′M0x ∼ χ2(k − 1), where x =

[X1, X2, ..., Xk]
′. �

Finally we will consider the general case x ∼ N(µ,Σ). We are interested in the

distribution of

q = (x− µ)′Σ−1(x− µ),

where Σ is the covariance matrix and hence is positive definite.

Theorem. (Distribution of a full rank quadratic form)

Let x ∼ Nk(µ,Σ), then (x− µ)′Σ−1(x− µ) ∼ χ2(k).

Proof.
Since Σ is positive definite, it has a square root. Define the symmetric matrix Σ1/2 so

that Σ1/2Σ1/2 = Σ. Then

Σ−1 = Σ−1/2Σ−1/2.

It follows straightly that

Σ−1/2(x− µ) ∼ N(0, I) ≡ z.

Therefore

z′z = (x− µ)′Σ−1/2Σ−1/2(x− µ) = (x− µ)′Σ−1(x− µ) ∼ χ2(k). �
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8.2.4 Independence of Quadratic Form

The normal family of distribution (chi-squared, t and F distribution) can be derived

as a functions of independent quadratic forms. Here we establish the condition for

independence.

Theorem.
If x ∼ Nn(0, In) and x′Ax and x′Bx are two idempotent quadratic form in x, x′Ax

and x′Bx are independent if AB = 0.

Proof.

Since A and B are both symmetric and idempotent, A = A′A and B = B′B. The

quadratic forms are therefore

x′Ax = x′A′Ax = x′1x1 where x1 = Ax

and

x′Bx = x′B′Bx = x′2x2 where x2 = Bx.

Both vectors have zero mean vectors, so the covariance matrix of x1 and x2 is

E(x1x
′
2) = AIB′ = AB = 0.

Since Ax and Bx are linear functions of a normally distributed random vector, they

are, in turn, normally distributed. Their zero covariance matrix implies that they are

statistically independent using the fact that continuous functions of two independent

random vector are also independent. �

Example.
The F distribution is the ratio of two independent chi-squared variables, each divided

by its respective degree of freedom. Let A and B be two idempotent matrices with

rank rA and rB and let AB = 0. Then

x′Ax/rA
x′Bx/rB

∼ F [rA, rB]. �
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Theorem.
A linear function, Lx, and an idempotent quadratic form x′Ax, in a standard normal

vector are statistically independent if LA = 0.

Example .

A particular case of t-ratio is

t(n− 1) =

√
nX̄

s
=

j′x

s
,

where j = 1√
n
i and s2 = x′Mix

n−1 . It suffices to shows that M0 · j = 0.

Linton Hall, MSU.

End of this Chapter
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