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New Evidence on Asymmetric Return-Volume Dependence and Extreme 

Movements 

 
 

Abstract 

This paper examines the return-volume dependence structure across six major 

international stock markets using a dependence-switching copula model. The model 

allows the return-volume dependence to switch between positive and negative 

dependence regimes. The empirical results indicate that the return-volume (tail) 

dependence is asymmetric under the negative and positive dependence regimes, 

respectively. Next, there is a larger return-volume (tail) dependence for downward 

price ticks than for upward price ticks when trading volumes are large for most 

countries, supporting the view of heterogeneous investors with short-sale constraints 

and negative skewness in returns. Finally, both the intensity of information flow and 

liquidity trading are important driving forces of the time-varying, return-volume 

dependence. 

Keywords: dependence-switching copula, tail dependence, return-volume 

dependence, liquidity, information flow. 

JEL: C32, C51, G12, G15 

 

1. Introduction 

Stock returns and trading volumes are contemporaneously correlated as 

suggested by the Mixture Distribution Hypothesis (Epps and Epps, 1976; Tauchen and 

Pitts, 1983). In the bivariate mixture mode of Tauchen and Pitts (1983), a rise in the 

intensity of information flow increases both the mean and the variance of volume, as 

well as the variance of return. This in turn affects the dependence of return and 

volume. As for the relationship between stock returns and volumes, four different 

market statuses are observed: rising returns/rising volumes, falling returns/falling 

volumes, rising returns/falling volumes, and falling returns/rising volumes.1 The first 

                                                       
1 Rising volumes mean volumes rise relative to trend since volumes are detrended using the 
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(last) two market statuses are referred to as the positive (negative) return-volume 

dependence regime since returns and volumes move in the same direction (in different 

directions). Besides, the dependence of returns and volumes switches between 

positive and negative dependence regimes over time. 

The above-mentioned four different market statuses are also implied by a model 

with heterogeneous investors and short-sale constraints (Chen et al, 2001; Hong and 

Stern, 2003). Stock markets, under normal conditions, mainly reflect the positive 

private information from optimistic investors since pessimistic investors will not 

actively participate in the market due to short-sale constraints. The arrival of positive 

(negative) public information causes the rise (fall) of returns and volumes. However, 

pessimistic investors will actively participate in the market when markets decline, and 

hence accumulated hidden information tends to come out. Markets mainly reflect the 

private information of pessimistic investors in such a case. Negative (Positive) public 

information causes the fall (rise) in returns and the rise (fall) in volumes.2 

Empirical investigation of the return-volume dependence in stock markets is an 

interesting research topic in financial economics (Ying, 1966; Epps, 1975; Tauchen 

and Pitts, 1983; Karpoff 1987). Several empirical models have been applied, such as 

linear regression models with a dummy variable to control positive and negative 

returns (Jain and Joh, 1988; Assogbavi et al., 1995), GARCH-type models 

(Lamoureux and Lastrapes, 1990; Gallant et al., 1992; Andersen, 1996; Chen et al., 

2001), Hamilton’s regime-switching models (Chen, 2012), and copula models (Ning 

and Wirjanto, 2009). However, none of these approaches are able to estimate the 

dependence structure of returns and volumes under the above-mentioned four 

                                                                                                                                                           
Hodrick-Prescott filter. 
2 Facing positive public information in such a case, investors may decide to hold their stocks and wait 
for price to go down again. This results in the rise in returns and the fall in volumes. 
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different market conditions.3 Furthermore, they fail to examine whether the (tail) 

dependences between falling returns/rising volumes and rising returns/falling volumes 

under the negative dependence regime are asymmetric. Nor are they, except Ning and 

Wirjanto (2009), able to examine the hypothesis of asymmetric (tail) dependence 

under different return-volume dependence regimes. However, these pieces of 

information are important to investors. 

This paper examines the dependence structure between stock returns and trading 

volumes by applying a dependence-switching copula model in which the unknown 

state variable switches between positive and negative return-volume dependence 

regimes. The paper makes three contributions to existing literature. First, our model is 

flexible since it allows the dependence between returns and volumes to switch 

between positive and negative dependence regimes. Hence, we are able to discuss the 

dependence structure of returns and volumes under different market conditions and to 

examine whether the symmetric hypothesis holds for dependence and tail dependence 

under different dependence regimes. Second, the unknown state variable influences 

parameters in both marginal distributions and copula functions. Instead of applying a 

two-step method, we estimate marginal distributions and copula parameters 

simultaneously, and hence our estimates are free from the criticism of efficiency loss. 

Third, we empirically investigate market driving forces that account for the 

time-varying, return-volume dependence. 

Using daily data from 01/03/2000 to 12/31/2016 for six developed stock markets, 

several important results are obtained. First, the duration is much longer for the 

positive return-volume dependence regime than the negative dependence regime, and 

                                                       
3 Most existing literature do not apply the copula approach to examine the relationship between returns 
and volumes and assume that innovations follow a symmetric multivariate normal or Student-t 
distribution. Hence, they fail to examine the hypothesis of symmetric dependence of returns and 
volume (Patton, 2006; Garcia and Tsafack, 2011). 
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the volatilities of returns and volumes increase under the negative dependence regime. 

Second, dependence and tail dependence of stock returns and volumes are asymmetric 

regardless of the dependence regime being positive or negative. Third, return-volume 

(tail) dependence is significantly larger for downward price ticks than for upward 

price ticks for most countries when volumes are high relative to trend. This finding 

supports the view of heterogeneous investors with short-sale constraints and negative 

skewness in returns (Hong and Stein, 2003; Chen et al., 2001).4 Finally, both the 

intensity of information flow and liquidity trading are important in driving the 

time-varying, return-volume dependence; this result agrees with Andersen (1996), 

Tauchen and Pitts (1983) and Li and Wu (2006).  

In related literature, Ning and Wirjanto (2009) is the first paper to examine the 

return–volume dependence using a copula approach. They adopt a mixture of the 

Clayton, the survival Clayton and the Frank copulas and estimate their models by a 

conventional two-step estimation method.5 There are three restrictions in Ning and 

Wirjanto (2009). First, their copula functions only allow them to consider the two 

different market statuses under the positive or negative return-volume dependence 

regime.6 Second, their mixture copulas fail to capture the fact that return-volume 

dependence switches between positive and negative dependence regimes. Finally, the 

adoption of a two-step approach in estimation leads their estimates to suffer the 

criticism of efficiency loss (Rodriguez, 2007). Besides, Ning and Wirjanto (2009) 

focus on East Asian stock markets instead of major stock markets. 
                                                       
4 Hong and Stein (2003) provide a theory based on heterogeneous investors to explain that returns will 
be negatively skewed conditional on high trading volumes when the heterogeneous opinions among 
investors are large. See section 3.3 for more details.  
5 The two-step procedure has a cost in terms of efficiency loss since the estimation errors in the first 
stage result in efficiency loss in the second stage estimation. 
6 Ning and Wirjanto (2009) find asymmetric return-volume (tail) dependence under the positive 
dependence regime but no (tail) dependence under the negative dependence regime. Their results 
indicate that market booms are associated with high trading volumes but market stress has no 
significant relationship with volumes. Our results under the positive dependence regime are consistent 
with theirs. 
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Wang et al. (2013) develop a dependence-switching copula model allowing for a 

state-varying dependence and then apply it to examine dynamic dependence between 

currency and stock markets. Our paper differs from Wang et al. (2013) in four ways. 

First, we investigate the dependence structure of returns and volumes for stock 

markets rather than the dependence structure between stock and currency markets. 

Second, their mixture copula is a weighted average of two copulas under a specific 

dependence regime, and the weight is assumed to be 0.5. However, we allow the 

weight to be determined by data. Third, although our dependence–switching copula 

model is similar to theirs, our estimation method is not. Wang et al. (2013) apply a 

two-step method suggested by Li (2005) in which the unknown state variable 

appearing in the mean and variance of the marginal model is measured by observed 

interest differentials. The marginal distribution is then estimated in the first step, and 

copula parameters, given the specified copula functions, are estimated in the second 

step.7 Instead of applying a two-step method, we estimate parameters in marginal 

models and the copula functions simultaneously. Finally, we investigate the market 

driving forces that account for the time-varying, return-volume dependence; these 

driving forces are not examined in Wang et al. (2013). 

The organization of the paper is given as follows. We briefly discuss the 

dependence-switching model and describe the one-step estimation method in Section 

2. The data and empirical results are discussed in Section 3, in which we explore 

parameter estimates and examine the symmetric hypothesis of dependence and tail 

dependence of returns and volumes. In Section 4, we identify market driving forces 

affecting the time-varying, return-volume dependence. Finally, conclusions are given 

                                                       
7 Wang et al. (2013) proxy the unobservable state with an instrument and estimate the parameters in 
marginal models with the quasi-maximum likelihood estimation method proposed by Bollerslev and 
Wooldridge (1992) at the first step. The copula parameters are obtained at the second step by fitting the 
dependence switching copula to the estimated residuals obtained from the marginal models. 
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in Section 5. 

2. The dependence-switching copula model 

Copulas provide a powerful approach to examine the dependence structure of 

two variables (Hu, 2006; Patton, 2006). A copula is a multivariate cumulative 

distribution function whose marginal distributions are uniform on the interval [0,1]. A 

bivariate joint cumulative distribution function (F) of two variables can be 

decomposed into two marginal cumulative distribution functions ( 1F  and 2F ) and a 

copula cumulative distribution function (C) that completely describes the dependence 

structure between the two series (Sklar, 1959). In order to remove serial correlations 

and heteroscedasticity from the data, we pre-whiten returns and volumes by 

estimating an AR(1)-GARCH(1,1) model using the Gaussian Quasi-Maximum 

Likelihood method (McNeil and Frey, 2000; Bee et al., 2016). Let  and  be 

the stock return and volume, respectively. The AR(1)-GARCH(1,1) model is specified 

as follows: 

titiiiti XX ,1,,    , 1,2i  , 

2
, ,0 ,1 , 1 ,2 , 1i t i i i t i i th h      . 

Following Rodriguez (2007), the residual ,i t  has been assumed to have a standard 

normal distribution.8 Let tititi h ,,, /  , where ti ,  follows a distribution with 

zero mean and unit variance. The cumulative distribution function of 1  and 2  is 

));;(),;((),,;,( 2221112121 cc FFCF   ,             (1) 

                                                       
8 The usefulness of the standardized Student's t distribution is also well documented in the literature, 
especially when dealing with heavy-tailed, high-frequency data of financial returns. We also assume the 
standardized Student's t distribution for residuals in the AR(1)-GARCH(1) model. Although the results 
in Tables 3 and 4 are not qualitatively affected by this change, the log likelihood value decreases for all 
countries except for CAN. This indicates that using the standardized t-distribution for residuals in the 
AR(1)-GARCH(1) model does not improve the model’s fit. Estimation results are available upon 
request from the authors. 
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where );( kkkF  , k=1,2, is the marginal cumulative distribution function of k ; 

k and c  are the parameter sets of );( kkkF   and C, respectively.9  

Assuming that all cumulative distribution functions are differentiable, the 

bivariate joint density is then given by 

);();,(),,;,(
2

1
212121 kk

k
kcc fuucf  



 ,                   (2) 

where 212121
2

2121 /),,;,(),,;,(   cc Ff  is the joint density of 

1  and 2 ; ku  is the “probability integral transform” of k  based on );( kkkF  , 

k=1,2;   2
1 2 1 2 1 2, ; ( , ; )c cc u u C u u u u      is the copula density function; and 

);( kkkf   is the marginal density of k , k=1,2. The bivariate joint density of 1  

and 2  is the product of the copula density and the two marginal densities. 

Conventional copula functions such as Clayton, survival Clayton and Gumble 

copulas are able to model either the positive or negative return-volume dependence. 

They are not able to capture the coexistence of positive and negative return-volume 

dependences simultaneously. However, the return-volume dependence in stock 

markets includes the positive (negative) dependence regime with volumes and returns 

moving in the same (opposite) direction. Moreover, the dependence is positive 

sometimes and negative other times, and it switches between them frequently during a 

specific sample period. It is therefore not appropriate to apply a conventional copula 

model to investigate the return-volume dependence in stock markets.  

To capture the above dependence switching, we propose a dependence-switching 

copula model in which the unobserved state variable affects copula functions and 

marginal models simultaneously (Wang et al, 2013). Consider the following 
                                                       
9 1  and 2  are pre-whitened stock returns and volumes. We apply pre-whitened data to estimate 

the parameters in marginal models and copula functions simultaneously.  
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state-varying copula: 

1 1
1 0 1 2

1 2 0 0
1 2

( , ; ),     if 1
( , ; , )

( , ; ),     if 0
tS c t

c c

c t

C u u S
C u u

C u u S


 


 

 


 , 

where tS  is an unobserved state variable and 1 1
1 2( , ; )cC u u   and 0 0

1 2( , ; )cC u u   are 

two mixed copulas with positive and negative dependence structures, respectively. 

The above two copula functions mix the Clayton copula ( CC ) with the survival 

Clayton copula ( SCC ):10 

1 1
1 2 1 1 2 1 1 1 2 2( , ; ) ( , ; ) (1 ) ( , ; )C SC

cC u u w C u u w C u u     ,           (3) 

0 0
1 2 2 1 2 3 2 1 2 4( , ; ) (1 , ; ) (1 ) (1 , ; )C SC

cC u u w C u u w C u u       ,      (4) 

where 1
1 2 1( , , )c w   , 0

3 4 2( , , )c w   , 1/( , ; ) ( 1)CC u v u v        , 

( , ; ) 1 (1 ,1 ; )SC CC u v u v C u v       , and (0, )   . After estimating the 

shape parameter, i , we can transform it to obtain Kendall’s i , the correlation 

coefficient i  and the tail dependence i  with / (2 ),i i i    sin( * / 2),i i    

and 1/0.5* 2 ,i
i

   for .4,3,2,1i 11  

2   ( 3 ) measures the dependence of high returns and high (low) volumes, and 

1  ( 4 ) measures the dependence of low returns and low (high) volumes as 

indicated in Figure 1. They are dependence measures under normal market conditions. 

2  ( 3 ) measures the dependence of extremely high returns with extremely high 

(low) volumes, and 1  ( 4 ) measures the dependence of extremely low returns with 

                                                       
10 The Gumbel copula could alternatively be employed, but it does not fit well according to model 
selection criteria such as the Akaike (Bayes) information criterion and the log-likelihood function 
value. 
11 Measuring dependence between two variables with the Pearson correlation coefficient is not 
appropriate when extreme values exist in data. In such a case our correlation coefficient is a better 
measure of the dependence between returns and volumes. The detailed derivation of tail dependence 
under different market status is given in the appendix. 
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extremely low (high) volumes.12 They measure the return-volume dependence under 

extreme market conditions and may be different from those under normal market 

conditions (Gallant et al., 1992; Marsh and Wagner, 2004; Ning and Wirijanto, 2009). 

However, few existing studies estimate dependences at extremes. Our (tail) 

dependence estimates provide further insights on the relationship between stock 

returns and trading volumes since none of the existing literature estimate the 

return-volume dependence structure under four different market conditions. 

The unobserved state variable tS  follows a two-state Markov chain with a 

transition probability matrix:  

00 00

11 11

1

1

p p
P

p p

 
   

, 

where 1Pr |ij t tp S j S i      for i,j=0,1. The state variable ( tS ) switches 

between the negative dependence regime ( tS =0) and the positive dependence regime 

( tS =1). The bivariate density function of the above model is expressed as 

1 0 1 0 1 0
1 2 1 1 2 2

1 2 1

1 2
0 1 0

( , ; , , , , , )

Pr( ) ( , ; ) Pr( ) ( ; , ) ,          (5)

c c

j j j
t c t k k k t

j k j

f

S j c u u S j f S j
  

   
      
   
  

       

  

where ( )jc   is the copula under regime j and j
c  is its parameter set. j

k  is the 

parameter set of the marginal density under regime j for return (k=1) and volume 

(k=2).  

The log-likelihood function of (5) is 

2

1 2,
1

( ) ( ) ( )c k k
k

L L L 


   ,                                 (6) 

where 1 0 1 0 1 0
1 1 2 2 11 00( ,  ,  ,  ,  ,  ,  ,  p )c c p       ; 1( )cL   and 2,( )k kL   are the log 

                                                       
12 In other words, the tail dependence 2  is the probability of having an extremely high return 

(volume) conditional on high volumes (returns).  
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of the copula density and the marginal density of kX , respectively. These two 

densities are given as follows: 

   1 1 0 0
1 1 2 1 2( ) log[Pr( 1) , ; (1 Pr( 1)) , ; ]c t c t cL S c u u S c u u       , 

)]0,;())1Pr(1()1,;()1log[Pr()( 01
,2  tkkkttkkktkk SfSSfSL  , 

where 1 =( 1 0
11 00, , , )c c p p   and 2,k =( 1 0

11 00, , , )k k p p  . 

Since the state variable influences both the marginal distribution and the copula 

function, the IFM method proposed by Joe and Xu (1996) cannot be applied.13 This 

paper estimates the parameters in marginal models and copula functions 

simultaneously. The marginal models are specified as follows:  

, ,
t t tS S S

i t i i i tv    , 1,  2i  , , ~ (0,1)tS
i tv N , 

where tS
i  and tS

i  denote the drift and the volatility, respectively, of ti ,  under the 

negative ( tS =0) or positive ( tS =1) dependence regime; the ,
tS

i tv s are residuals that 

are normally distributed with zero mean and a unit variance.14 

Following the Canonical Maximum Likelihood (CML) approach, this paper 

transforms the standardized residuals into a uniform distribution with the following 

empirical marginal cumulative distribution function:15 

,
1

1ˆ ˆ( ) ( )
1

t

T
S

i i t
t

F I v
T

 


 
  ,                                   (7) 

                                                       
13 Due to there not being any prior theory about volumes and price changes, it is difficult to proxy the 
unobservable state variable with the instruments proposed by Li (2005) and Wang et al. (2013). 
14 The technical sophistication of one-step estimation lies in its allowing of the state variable to 
influence parameters in both marginal distributions and a copula function. The large number of 
parameters makes it difficult to find the numerical maximum of the likelihood function (Patton, 2004, 
2006). Although the standardized t-distribution for ,

tS
i tv  may fit the data better, it raises the number of 

parameters to be estimated by four. This significantly increase the difficulty of finding convergence in 
estimation for some countries. Therefore, our assumption of a normal distribution for ,

tS
i tv  is an 

outcome of the trade-off between estimation cost and the feasibility of model specification. 
15 The CML approach points out that transforming standardized residuals based on an empirical CDF 
will always result in a uniform distribution asymptotically regardless of the specification of marginal 
models. 



11 
 

where I( )  is an indicator function that is one if ,ˆ tS
i tv   and is zero otherwise. This 

paper then obtains the cumulative probability for each observation of ,ˆ tS
i tv  and 

denotes it by ,ˆ tS
i ju = ,

ˆ ˆ( )tS
k i jF v , i=1, 2, 1,2,...,j T , 0,1tS  . 

Since the dependence structure follows a Markov-switching process, we apply 

Hamilton’s filtered system to transform the log-likelihood function of the model as 

follows: 

 | 1
ˆ( ) log t t tL    , 

   1

| | 1 | 1
ˆ ˆ ˆ
t t t t t t t t    



    , 

1| |
ˆ ˆ
t t t tP   , 

1 1 1 1 1 1
1 1, 1 2 2, 2 1, 2,

0 0 0 0 0 0
1 1, 1 2 2, 2 1, 2,

ˆ ˆ( ; ) ( ; ) ( , ; )

ˆ ˆ( ; ) ( ; ) ( , ; )

t t t t c

t

t t t t c

f f c u u

f f c u u

    


    

 
   
  

, 

where “ ” is the Hadamard product and tSc  is the density function of tSC  for 

0,1tS  . The vector of parameters 1 0 1 0 1 0
1 1 2 2 11 00( ,  ,  ,  ,  ,  ,  ,  c c p p       ) can then be 

estimated by maximizing ( )L  16 

1

arg max ( )
T

t

L




   .                                        (8) 

After estimating the model’s parameters, we construct the time-varying 

dependence of returns and volumes. Since   1 1

1 1 2 1 1 2 1 1 20 0
( , ) ( , ) ( , ),E C u u C u u dC u u  

the Kendall’s   of the mixed copula under the positive dependence regime is 

1
1 1 1 1 2 2[ / (2 )] (1 )[ / (2 )].w w           

                                                       
16 To avoid an arbitrary initial value, we first use the simplex search method of Lagarias et al. (1998) to 
obtain the estimate of  ( 0̂ ), which is then used as the initial value to obtain the MLE estimates of 

 ( ̂ ).  
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Similarly, Kendall’s   of the mixed copula under the negative dependence regime is 

0
2 3 3 2 4 4[ / (2 )] (1 )[ / (2 )]w w         .17 

Having Kendall’s 1  and 0 , the correlation coefficient of the mixed copula 

under different dependence regimes can be calculated as sin( * / 2)j j  
 
for j=0, 

1. Therefore, the smoothing correlation ( sm ) is 

1 0
1, 0, 1, 0,sin( ) sin( ) sm sm sm sm smp p p A p B         

where A= 1 1 1 20.5 [ (1 ) ]w w     , B= 2 3 2 40.5 [ (1 ) ]w w     , and ,j smp  is the 

smoothing probability in regime j for j=0,1 (Kim and Nelson, 1999).18 

3. Empirical investigation 

3.1 Data description 

Daily volume and spot price index data for Canada (CAN), France (FRA), 

Germany (GER), Japan (JAP), the United Kingdom (UK) and the United States (USA) 

are downloaded from Datastream. The spot price indices are Standard and Poor's / 

Toronto Stock Exchange Composite Index of Canada (S&P/TSX), Cotation Assistée 

en Continu of France (CAC 40), Deutscher Aktienindex of Germany (DAX 30 

Performance), Tokyo Stock Exchange Index of Japan (TOPIX), Financial Times 

Stock Exchange 100 Index of UK (FTSE 100), and Standard and Poor's 500 

Composite of USA (S&P 500 Composite). Restrictions on cross-border capital flows 

began to be removed in the early 1990s, and capital was free to move across major 

industrial countries by 2000. We therefore focus on data from 2000 and later. The 

sample period starts from 2000/01/03 and ends on 2016/12/31 for all countries except 

CAN and GER. Due to the data availability of volumes, Germany’s sample period 

                                                       
17 The detailed derivations of the Kendall’s correlation and smooth correlation of the mixed copula are 
given in the appendix.   
18 See the appendix for derivation details. 
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starts from 2003/08/01 and Canada’s ends at 2016/09/15. 

The stock return is the log-difference of the corresponding stock price index 

multiplied by 100. We employ the algorithm proposed by Hodrick and Prescott (1997, 

HP) to detrend volumes (Statman et al, 2006; Ning and Wirjanto, 2009).19 Figure 2 

plots detrended volumes for all countries and they appear to be stationary.  

Table 1 presents summary statistics of the data and points out that both series are 

stationary as indicated by the ADF and PP unit-root tests. The means of stock returns 

and volumes are smaller than their respective standard deviations, indicating 

relatively high risks in stock markets. Moreover, both series exhibit excessive kurtosis 

and the normality of an individual series is strongly rejected as indicated by the 

Jarque-Bera test. Lastly, the Pearson return-volume correlation coefficient is 

significantly negative for most countries. 

3.2 Empirical copula table 

In Table 2, we calculate an empirical copula table to realize the dependence 

structure of data. We first rank the pair of return and volume in ascending order and 

then divide each series evenly into 10 bins. Bin 10 includes the observations with the 

highest values and bin 1 includes the observations with the lowest values. The ranks 

for returns (i) are on the horizontal axis while the ranks for volume (j) are on the 

vertical axis. The number of observations in cell (i, j) reveals information about the 

relationship between returns and volumes. If there is a positive right (left) tail 

dependence between the two series, we would expect more observations in cell (10,10) 

(cell (1,1)). However, if negative right (left) tail dependence between the two series 

appears, we would then expect more observations in cell (1,10) (cell (10,1)). 

                                                       
19 The plots of the volumes reveal nonlinear secular trends over time. We therefore apply the HP filter 
to detrend volumes, and the smoothing parameter in the HP filter is set to 6*106 (Ning and Wirjanto, 
2009). The empirical results in Section 3 are not qualitatively affected if the first difference of volume 
( 2 2 2 1t t tX X X    ) is applied. 
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 Taking France as an example, the number of observations in cell (1, 10) is 103, 

indicating that there are 103 observations, out of 4,347 observations, where returns lie 

below the 10th percentile (the 1/10th quantile) and the volumes are above the 90th 

percentile (the 9/10th quantile). The number of observations in cell (10, 10) is 89, 

indicating that there are 89 observations where both returns and volumes lie above 

their respective 90th percentiles (the 9/10th quantiles). The numbers in other cells are 

all smaller than those in the above two cells, reflecting the U-shaped tail dependence 

for both variables. 

The results from Table 2 also reveal evidence of negative left and positive right 

dependences for the remaining five countries. The numbers of observations in cell 

(1,1) and cell (10,1) are 12 and 19 for FRN, 20 and 29 for CAN, 4 and 15 for GER, 21 

and 17 for JAP, 16 and 26 for UK, and 20 and 17 for USA. These numbers are small 

relative to the numbers in cell (10,10) and cell (1,10), indicating the importance of 

taking into account the dependence between returns and volumes under different 

market conditions. 

3.3 Estimation results 

The top panel of Table 3 reports parameter estimates of marginal models and 

indicates that most of them are significant at the 5% level. The middle and bottom 

panels of Table 3 report estimated dependences and tail dependences, which are 

constructed based on the estimated shape parameters, the ˆ si .  Standard errors of 

dependence and tail dependence are constructed using the Delta method.  

Several results are observed from Table 3. First, the estimated transition 

probability is much larger for the positive return-volume dependence regime ( 11p̂ ) 

than for the negative dependence regime ( 00p̂ ) for all countries. This implies that 

duration is much longer for the positive regime than for the negative regime. As 
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indicated by Figure 3, smoothing probabilities for the positive dependence regime are 

similar for most countries and are high for most of the sample period. Hong and Stein 

(2003) point out that, under normal market conditions, volumes and returns appear to 

have a positive dependence since pessimistic investors fail to dominate stock markets 

due to short-sale constraints. Figure 4 plots the smoothing dependence of returns and 

volumes for all countries, indicating that the return-volume dependence switches 

frequently between positive and negative regimes. The periods in Figure 4 with a 

positive return-volume dependence generally match the periods in Figure 3 with a 

high smoothing probability for the positive dependence regime. 

Next, the volatilities of return ( 1ˆ
i , i=0,1) and volume ( 2ˆ i , i=0,1) are significant 

at the 5% level under both the positive (i=1) and negative (i=0) dependence regimes 

for all countries, and they are more volatile under the negative regime than under the 

positive regime. Tauchen and Pitts (1983) showed that both volume and return 

volatilities increase if traders react diffusely to new information. Our results agree 

with their findings since both optimistic and pessimistic traders are involved under the 

negative dependence regime and react differently to new information. 

Third, under the positive dependence regime, the results from Table 3 indicate 

that 2̂  and 2̂  are significant at conventional levels for all countries except UK. 

However, 1̂  and 1̂  are small and insignificant for all countries. These results 

indicate that (extremely) high volumes are more likely to synchronize with (extremely) 

high returns, but (extremely) low volumes are unlikely to coexist with (extremely) 

low returns. Hence dependence and tail dependence are both asymmetric under the 

positive dependence regime for 5 of the 6 countries, which agrees with results found 
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in Ning and Wirjanto (2009).20  

Under the negative dependence regime, 4̂  is significant but 3̂  is 

insignificant at conventional levels for all countries. High volumes are significantly 

dependent with low returns, but low volumes do not have a significant relationship 

with high returns. As for the tail dependence, 4̂  is significant but 3̂  is 

insignificant for all countries. Extremely high volumes are significantly dependent 

with extremely low returns, but extremely low volumes do not have a significant 

relationship with extremely high returns. These results indicate that both dependence 

and tail dependence are asymmetric under the negative dependence regime. 

Although volumes reflect the arrival of information, our results point out that the 

return-volume dependence for downward price ticks is significant only when volumes 

are high relative to trend. It is, therefore, not appropriate for investors to predict price 

changes based on volumes when they are low relative to trend. Besides, the 

significance of 4̂  and 2̂  and the insignificance of 1̂  and 3̂  support an old 

Wall Street adage that “It takes volume to make price moves”. 

Fourth, the results from Table 4 indicate that the dependence of extremely low 

returns with extremely high volumes ( 4ˆ )  is significantly greater than that of 

extremely high returns with extremely high volumes ( 2̂ ) for FRA, GER, JAP and 

UK. Hong and Stein (2003) predict that negative skewness in returns will be most 

pronounced around the periods of heavy trading volumes. Our finding of 4 2ˆ ˆ   

supports negative skewness in returns found by Hong and Stein (2003) and Chen et al. 

(2001).  

Table 4 also points out a significantly larger return-volume dependence for 

                                                       
20 Volume has been detrended by the HP filter, and hence it measures the deviation from its trend level.  
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downward price ticks than for upward price ticks when volumes are high relative to 

trend ( 4 2ˆ ˆ  ) except for CAN. Empirically, Wood et al. (1985) and Chen (2012) 

indicate a larger return-volume dependence for downward price ticks than for upward 

price ticks, but Ying (1966), Epps (1975) and Jain and Joh (1988) find the opposite. 

Our finding that 4 2ˆ ˆ   for most countries points out that the asymmetric 

return-volume dependence obtained by Wood et al. (1985) and Chen (2012) are 

supported only when volumes are high relative to trend. 

Both dependence and tail dependence are weaker when returns and volumes are 

high than when returns are low but volumes are high, supporting Hong and Stein 

(2003)’s view of heterogeneous investors with short-sale constraints. The reason is 

that focusing on heterogeneous investors, bearish investors did not initially participate 

in the market under normal market conditions because of short-sale constraints. When 

markets decline, bullish investors bail out of the market and bearish investors become 

the marginal supporting buyers. More signals and hidden information regarding 

bearish investors are revealed and learned. After digesting the newly released hidden 

information, fully rational, risk-neutral arbitrageurs re-enter the market to short the 

position, which results in an increase in market participants and trading volumes and 

hence an increase in 4  and 4 . This is because returns are negatively skewed 

conditional on high trading volumes when heterogeneous opinions among investors 

vary greatly (Hong and Stein, 2003) and because the return-volume dependence 

increases with market participants (Tauchen and Pitts, 1983).  

To justify the appropriateness of adopting the dependence-switching copula 

model, we evaluate its goodness-of-fit relative to single-copula models and mixture 
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copula models using the Akaike and Bayes information criteria (AIC and BIC). 21 

Eight different copula models are considered: Gaussian copula, Student-t copula, 

(rotated) Clayton, (rotated) survival Clayton copula, mixture Clayton copula, and 

mixture rotated Clayton copula. We also report the log likelihood value (LV) of 

different models. The results from Table 5 indicate that the estimated AIC (BIC) from 

the dependence-switching copula model is smaller than those from the single-copula 

and mixture copula models for all countries. Besides, the dependence-switching 

copula model also has the highest LV for different countries. These results support the 

appropriateness of adopting the dependence-switching copula model to examine the 

dependence structure between returns and volumes. 

If our model is correctly specified and estimated, we should find that the 

relationship between returns and volumes is positive (negative) when the smoothing 

correlation ,ˆsm t  is positive (negative). We therefore estimate the following threshold 

model: 

2 1 1 1 1 ,

2 2 2 1 2 ,

ˆ,     if  0,

ˆ,     if  0.
t t t sm t

t t t sm t

X X

X X

   
   

    

    
 

    The results from Table 6 indicate that 1̂  is positive and 2̂  is negative with 

the absolute value of 2̂  greater than 1̂  for all countries. We also report 

dependence estimates under positive and negative dependence regimes ( 1̂  and 0̂ ) 

based on our dependence switching model and find that 0̂ > 1̂  for all countries.22 

                                                       
21 Consider a sample with size T and assume that the number of estimated parameters is K. The AIC 
and BIC are defined as follows: AIC(K) 2ln LV( ) 2*K    , BIC(K) 2 ln LV( ) K *ln(T)    , where 
ln LV( )  is the estimated log likelihood value. The model with the minimum AIC (BIC) is selected as 

the best model based on the AIC (BIC). 
22 Dependence estimates under the negative and positive dependence regimes ( 0̂  and 1̂ ) are 0.145 

and 0.108 for CAN, 0.240 and 0.136 for FRA, 0.228 and 0.122 for GER, 0.331 and 0.132 for JAP, 
0.144 and 0.042 for UK, and 0.255 and 0.191 for USA. 
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The results from the ˆ si  agree with those from the ˆ si ; this supports that our model 

is correctly specified and estimated. 

4. Driving forces of return-volume dependence 

Examining driving forces accounting for the time-varying, asymmetric, 

return-volume dependence is important in literature (Karpoff, 1987). According to the 

microstructure framework approach, returns and volumes are both related to the 

arrival of unanticipated information (Andersen, 1996). Hence, the time-varying, 

return-volume dependence, ,sm t , could be affected by the intensity of information 

flow, which is measured by return volatility (Andersen, 1996). Several authors point 

out that the price range between the highest and lowest log security prices over a fixed 

sampling interval is a fine proxy variable for the stochastic volatility of returns 

(Garman and Klass, 1980; Yang and Zhang, 2000; Alizadth et al., 2002; Brandt and 

Jones, 2006). We, therefore, measure the intensity of information flow by the stock 

price differential between the daily highest and lowest and then apply it to explain the 

time-varying dependence between returns and volumes. The regression equation is 

given as follows: 

, 1 1 ,ˆsm t HL t tp       , 

where , log( ) log( )HL t Ht Ltp P P   is the log price differential between the daily 

highest ( HtP ) and lowest ( LtP ). Since ,ˆsm t  is a truncated variable with its value lying 

between -1 and 1, we estimate the above censored model with the maximum 

likelihood estimation method. The results from the first panel of Table 7 reveal that 

1̂  is significantly negative at conventional levels for all countries in the sample. The 

increase in the intensity of information flow tends to drive the return-volume 

dependence regime from the positive regime to the negative regime, resulting in the 
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increase of the volatility of returns and volumes. This is because return and volume 

volatilities are larger under the negative dependence regime than under the positive 

regime, as indicated in Table 3. Besides, the dependence is stronger under the 

negative dependence regime than under the positive dependence regime.23 Therefore, 

our results echo the findings in Tauchen and Pitts (1983) and Harris (1986) that the 

return-volume dependence increases with the intensity of information flows. 

    Next, Li and Wu (2006) point out that liquidity is another factor affecting 

return-volume dependence. They point out that the process of volume includes 

liquidity trading and information flow components, but the liquidity trading is treated 

as a constant in Andersen (1996), and hence it has no effect on return volatility.24 Li 

and Wu (2006) relax this assumption by postulating that liquidity trading can lower 

return volatility. Furthermore, Li and Wu (2006) empirically find that the effect of 

liquidity trading on return volatility is significant, and hence it should be an important 

driving force for the time-varying, return-volume dependence. 

The liquidity index	  is widely measured by the ratio of the daily total local 

currency value of shares traded ( tDVT ) to the absolute value of returns (| |): 

/| |, with the restriction of 0 (Amihud et. al., 1997; Berkman 

and Eleswarapu, 1998). However, the restriction of 0	 is violated for some 

dates in our data. We therefore follow Amihud (2002) to construct the illiquidity index: 

| |/ . 25 The time-varying, return-volume correlation is then regressed 

on the illiquidity index as follows: 

                                                       
23 See footnote 23 for estimates. 
24 Andersen (1996) points out that the focus of the market microstructure literature is on intraday 
patterns rather than interday dynamics, so there are typically no explicit predictions regarding the 
relation among several variables such as bid-ask spread and market liquidity on return volatility at the 
daily frequency. 
25 Data for the daily total dollar value of shares traded are available from Datastream for all countries 
except the United States. We, therefore, measure this variable for the U.S. by multiplying the daily 
number of shares traded with the closing price at time t . 
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 , 1 1ˆsm t t tILq       . 

The results from the second panel of Table 7 indicate that 1̂  is significantly 

negative for all countries at the 1% level, indicating that the increase in liquidity 

(illiquidity decreases) tends to move the return-volume dependence toward the 

positive dependence regime, which has small return and volume volatilities as 

indicated by Table 3. Besides, under the positive dependence regime, the stock market 

mainly reflects the private information from optimistic investors, and there are few 

short-sale transactions since pessimistic investors bail out of the market. Hence, 

transaction costs are lower under the positive dependence regime. In other words, our 

results indirectly support the finding that an increase in liquidity decreases transaction 

costs and return volatilities (Chordia et al., 2000, 2001, 2002). 

    Although information flow and liquidity are both helpful in driving the 

time-varying, return-volume dependence, one may be interested in knowing the 

dominant factor of the two. We therefore include both variables in the regression 

equation simultaneously. The results from the bottom panel of Table 7 indicate that 

the estimated coefficients of information flow and illiquidity are significant for all 

countries except CAN, in which the estimated slope coefficient is significant for 

illiquidity but not for information flow. Hence, both the intensity of information flow 

and liquidity trading are important driving forces of time-varying, return-volume 

dependence. An increase in liquidity tends to move the return-volume dependence 

toward the positive dependence regime. However, an increase in the intensity of 

information flow tends to drive the return-volume dependence regime to the negative 

regime.  

5. Conclusions 

This paper applied the dependence switching copula model, proposed by Wang 
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et al. (2013), to explore the time-varying dependence structure between stock returns 

and trading volumes. The advantage of our model is that it allows us to consider four 

different market conditions: rising returns/rising volumes, falling returns/falling 

volumes, rising returns/falling volumes, and falling returns/rising volumes. We 

estimate parameters in marginal models and the copula functions jointly since the 

unobserved state variable enters into marginal distributions and copula functions. 

Using daily data over 2000-2016 for six major industrial countries, we find that the 

volatilities of return and volume are larger for the negative dependence regime than 

for the positive dependence regime. Next, the (tail) dependence of high returns and 

high volumes is significantly lower than that of low returns and high volumes for 

most countries, which supports the view of heterogeneous investors with short-sale 

constraints and negative skewness in returns. Third, return-volume dependence and 

tail dependence are both asymmetric under the positive and negative dependence 

regimes, respectively. Finally, both the intensity of information flow and liquidity 

trading are important in driving the time-varying, return-volume dependence. Our 

results shed light on uncovering the time-varying correlation between stock returns 

and volumes and illuminate the factors that drive the above correlation. 
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Appendix 

The purpose of this appendix is to derive the tail dependence coefficient (TDC), 

Kendall’s   and the correlation coefficient   of the mixed copula that combines 

the Clayton copula and the Survival Clayton copula.  

A.1. Derivation of the tail dependence of the mixed copula. 

According to Nelsen (1999), the right and left TDCs in terms of copulas are  

1

1 2 ( , )
lim

1R

C


 




  


, 

0

( , )
limL

C





 


, 

where C is a copula function. The analytical expression of the Clayton and the 

Survival Clayton copulas are 

1 1 11/
1 2 1 1 2( , ; ) ( 1)CC u u u u       , 

       1 2 2 1 2 1 2 2( , ; ) 1 (1 ,1 ; )SC CC u u u u C u u       . 

Therefore,  

1 1 1 1 11/ 1/( , ) ( 1) (2 1)CC                  , 

       2( , ) 2 1 (1 ,1 ; )SC CC C          . 

The right and left TDCs of the Clayton copula are 
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Furthermore, the right and left TDCs of the Survival Clayton copula are 

1 1 0

1 2 ( , ) (1 ,1 ) ( , )
lim lim lim

1 1

SC C C
SC
R

t

C C C t t

t  

   
   

  

    
 

21/2  ,
 

0 0 1

( , ) 2 1 (1 ,1 ) 1 2 ( , )
lim lim lim 0

1

SC C C
SC
L t

C C t C t t

t  

     
   

 

    
 

. 

Consider a mixed copula that mixes the Clayton copula with the Survival Clayton 

copula, which is used to proxy a positive regime: 

1
1 2 1 1 1 2 1 1 1 2 2( , ; ) ( , ; ) (1 ) ( , ; )c C SCC u u w C u u w C u u      .  

The right TDC of the mixed copula is 
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By analogy, the left TDC of the mixed copula is 

1
1 1 1

0 0

( , ) ( , ) (1 )* ( , )
lim lim

C SC

L

C w C w C
 

     
  

 
   

1 1(1 )C SC
L Lw w    1

C
Lw . 

A similar result can be derived under a negative regime measured by 

0
1 2 0 2 1 2 3 2 1 2 4( , ; ) (1 , ; ) (1 ) (1 , ; ),c C SCC u u w C u u w C u u         since 0

1 2 0( , ; )cC u u   is the 

rotation of 1
1 2 1( , ; )cC u u  . Hence, we can derive 0

2(1 ) RSC
R Rw    and 0

2
RC

L Lw  , 

where RSC
R  and RC

L  are the right TDC of the rotated Survival Clayton copula and 

the left TDC of the rotated Clayton copula, respectively.  

 

A.2. Derivation of Kendall’s   and the correlation coefficient   of the mixed 

copula. 

Let ( )i i iu F R  and [0,1]iu   for i=1, 2, where the siu  are the “probability 

integral transforms” of iR . Since   1 11 1 1
1 2 1 2 1 20 0

( , ) ( , ) ( , )E C u u C u u dC u u   , then the 

Kendall’s   of the mixed copula under a positive regime can be written as 

 1 1
1 2 14 ( , ; ) 1cE C u u    

 1 1 2 1 1 1 2 24 ( , ; ) (1 ) ( , ; ) 1C SCE w C u u w C u u      

        1 14 ( ) 1 (1 ) 4 ( ) 1C SCw E C w E C            

1 1 1 1 2 2[ / (2 )] (1 )[ / (2 )].w w          

Similarly, Kendall’s   of the mixed copula under a negative regime can be written 

as 0
2 3 3 2 4 4[ / (2 )] (1 )[ / (2 )]w w         . 

After obtaining Kendall’s  ( 1  and 0 ) of the mixed copula, the correlation 

coefficient of the mixed copula can be calculated as sin( / 2)j j  
 
for j=0, 1. 

Therefore, the smoothing correlation is 
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             = sin{0.5 [ ]} sin{0.5 [ ]},           
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where ,j sp  for j=0,1 is the smoothing probability in regime j .  
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Table 1. Descriptive statistics and unit root tests 

 

  Median S.D Skew Kurt J-B ADF PP Corr.

CAN 
1tX  0.070 1.142 -0.640 12.017 14504.7 -65.676 -66.003 

-0.014
2tX  0.014 1.486 -1.243 9.842 9267.0 -17.030 -45.980 

FRA 
1tX  0.034 1.484 -0.033 7.781 4141.0 -32.736 -68.433 

-0.043
2tX  0.010 0.314 -1.190 9.978 9846.7 -14.645 -44.287 

GER 
1tX  0.101 1.363 -0.055 8.907 4963.8 -58.260 -58.384 

-0.081
2tX  -0.001 0.332 -2.264 31.907 121744 -17.996 -44.180 

JAP 
1tX  0.036 1.423 -0.340 8.765 5857.2 -63.696 -63.914 

0.019
2tX  -0.010 0.244 -2.231 26.192 96935.4 -18.075 -54.441 

UK 
1tX  0.041 1.223 -0.184 9.157 6795.8 -31.746 -69.141 

-0.049
2tX  0.020 0.288 -2.097 16.934 36832.3 -16.057 -40.260 

USA 
1tX  0.049 1.244 -0.181 10.985 11382.3 -50.920 -71.567 

-0.032
2tX  0.005 0.207 -1.008 9.127 7413.5 -15.477 -37.901 

Note: 1tX  indicates stock returns and 2tX  represents the detrended trading volumes 

using the Hodrick-Prescott filter; S.D. and Kurt. indicate the standard deviation and the 
kurtosis of a series, respectively; Corr. is the Pearson correlation coefficient of 1tX  and 

2tX ; J-B is the Jarque-Bera test for the normality of a series; ADF and PP are the 

augmented Dickey-Fuller test and the Philips-Perron test, respectively, for the unit-root 
hypothesis; Bold-faced numbers indicate significance at the 5% level. 
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Table 2. Empirical copula table 
 
CAN FRA

72 40 26 38 36 32 39 29 37 71 103 43 38 27 27 23 23 28 34 89
55 39 36 29 30 37 36 41 39 77 68 54 38 33 26 21 35 39 45 75
54 50 49 39 35 30 34 39 49 41 61 46 43 42 33 33 41 34 42 60
40 50 46 34 37 45 33 42 41 52 50 43 48 38 37 49 37 36 62 35
46 40 43 40 47 39 38 46 47 34 32 51 44 45 54 37 47 41 40 44
37 50 40 43 35 38 48 49 45 34 41 44 53 35 50 37 42 51 49 32
37 38 44 44 48 38 47 48 45 31 21 42 42 44 47 41 56 67 48 27
31 40 44 41 50 49 43 46 50 26 23 37 38 53 50 54 64 47 42 27
28 39 50 55 50 60 46 36 30 25 24 39 54 56 49 68 35 36 46 27
20 33 42 57 51 52 56 44 36 29 12 35 37 62 61 72 55 56 26 19

GER JAP
94 38 29 20 15 15 26 21 28 55 59 29 29 22 25 38 40 49 51 75
60 41 25 27 23 17 25 28 27 69 54 39 40 31 22 37 46 49 43 56
54 40 36 32 30 24 22 33 29 41 52 42 27 40 28 53 35 42 52 46
34 37 28 29 27 35 35 36 48 32 62 37 39 36 36 33 41 33 40 60
31 45 46 27 27 32 27 37 32 38 38 55 44 38 40 41 27 39 53 43
19 28 31 42 37 37 33 39 47 28 46 48 34 51 39 37 44 34 39 45
19 38 41 29 43 37 56 33 24 21 32 42 48 43 51 45 39 44 40 33
13 21 38 41 42 44 33 41 44 24 26 42 47 52 57 50 52 37 30 24
13 27 38 44 51 48 40 36 27 18 27 44 51 50 52 42 45 51 37 18
4 27 29 50 46 53 44 37 36 15 21 39 58 54 67 42 48 39 32 17

UK USA 
93 44 37 30 25 22 31 34 30 83 110 43 39 24 17 22 27 24 30 92
69 44 38 40 40 33 32 48 38 46 63 36 45 32 32 28 29 43 46 73
52 52 43 48 42 32 35 39 37 49 40 50 53 37 39 36 35 35 46 57
33 48 40 41 39 38 45 44 52 49 40 54 42 37 34 38 52 41 48 41
44 43 48 39 42 33 54 38 46 42 41 47 42 46 33 45 37 42 56 39
31 49 47 49 31 43 40 48 49 41 28 41 54 45 38 47 43 52 47 33
36 43 48 41 48 49 40 47 38 39 39 34 33 45 64 47 41 57 35 32
29 38 44 43 57 47 49 45 54 23 32 45 35 54 57 48 39 44 49 25
26 40 37 48 48 64 52 47 35 31 15 36 40 51 57 54 69 43 43 19
16 27 47 50 56 68 51 39 49 26 20 41 45 56 57 63 55 47 27 17

Notes: Both returns and volumes are sorted in ascending order, and each series is 
evenly divided into 10 bins. Bin 10 includes the observations with the highest values 
and bin 1 includes the observations with the lowest values. The ranks for returns (i) 
are on the horizontal axis while the ranks for volume (j) are on the vertical axis. The 
number of observations in cell (i, j) reveals information about the relationship 
between returns and volumes. 
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Table 3. Estimated coefficients, dependences and tail dependences 
 
 CAN FRA GER JAP UK USA 

Marginal Distribution Model 

̂  
0.0634 

(0.0176) 
0.1073 

(0.0197) 
0.1327 

(0.0212) 
0.0317 

(0.0159) 
0.0972 

(0.0212) 
0.1434 

(0.0207) 

̂  
-0.4388 
(0.0921) 

-0.6210 
(0.0652) 

-0.6778 
(0.1255) 

-1.1190 
(0.1903) 

-0.4806 
(0.1907) 

-0.7220 
(0.1179) 

̂  
0.0425 

(0.0122) 
0.0016 

(0.0149) 
-0.0694 
(0.0155) 

-0.0096 
(0.0121) 

0.0065 
(0.0176) 

-0.0367 
(0.0144) 

̂  
-0.2364 
(0.1173) 

0.0468 
(0.0875) 

0.3256 
(0.0973) 

0.3185 
(0.2213) 

0.0683 
(0.0906) 

0.4136 
(0.0788) 

 
0.9295 

(0.0133) 
0.8967 

(0.0127) 
0.8632 

(0.0165) 
0.9395 

(0.0117) 
0.9037 

(0.0215) 
0.8698 

(0.0159) 

 
1.4129 

(0.0618) 
1.2911 

(0.0598) 
1.2776 

(0.0529) 
1.5020 

(0.0938) 
1.1797 

(0.0508) 
1.3924 

(0.0836) 

 
0.6772 

(0.0105) 
0.7630 

(0.0127) 
0.6862 

(0.0217) 
0.7329 

(0.0105) 
0.7315 

(0.0380) 
0.7358 

(0.0143) 

 
2.2601 

(0.0978) 
1.8666 

(0.0845) 
1.8453 

(0.0876) 
2.5697 

(0.1069) 
1.7323 

(0.1414) 
1.7506 

(0.0591) 
Log(L) -11213.2 -11917.8 -9193.3 -10921.9 -11820.2 -11603.9 

Positive Dependence Regime 
 0.0000 

(0.0127) 
0.0000 

(0.0118) 
0.0000 

(0.0098) 
0.0000 

(0.0458) 
0.0000 

(0.0252) 
0.0000 

(0.0101) 
 0.0000 

(0.1767) 
0.0000 

(0.1232) 
0.0000 

(0.1670) 
0.0000 

(0.8083) 
0.0000 

(0.3975) 
0.0000 

(0.1144) 

 
0.1954 

(0.0401) 
0.2043 

(0.0312) 
0.2663 

(0.0655) 
0.3018 

(0.0526) 
0.0844 

(0.0634) 
0.2974 

(0.0479) 

 
0.0489 

(0.0281) 
0.0665 

(0.0272) 
0.0850 

(0.0433) 
0.1032 

(0.0330) 
0.0011 

(0.0054) 
0.1482 

 (0.0444) 

 
0.4488 

(0.1361) 
0.3370 

(0.0622) 
0.5472 

(0.1458) 
0.5691 

(0.0998) 
0.5094* 
(0.2985) 

0.3641 
(0.1201) 

̂  
0.9171 

(0.0086) 
0.8581 

(0.0149) 
0.8541 

(0.0195) 
0.9638 

(0.0061) 
0.8166 

(0.0553) 
0.8555 

(0.0167) 
Negative Dependence Regime 

 
0.0309 

(0.0417) 
0.0065 

(0.0626) 
0.0030 

(0.0863) 
0.1005 

(0.0967) 
0.0275 

(0.1255) 
0.0338 

(0.0958) 

 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0035 

(0.0185) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 

 
0.2832 

(0.0569) 
0.3086 

(0.0332) 
0.3842 

(0.0510) 
0.5947 

(0.0411) 
0.2393 

(0.0455) 
0.4416 

(0.0472) 

 
0.0949 

(0.0371) 
0.1915 

(0.0369) 
0.2064 

(0.0399) 
0.2654 

(0.0182) 
0.0814 

(0.0356) 
0.2277 
(0.312) 

 
0.5534 

(0.1112) 
0.2321 

(0.0412) 
0.4197 

(0.0988) 
0.5589 

(0.0258) 
0.4522 

(0.1952) 
0.4705 

(0.0794) 

̂  
0.2600 

(0.0518) 
0.1747 

(0.0481) 
0.3655 

(0.0433) 
0.0611 

(0.0722) 
0.2792 

(0.0427) 
0.2984 

(0.0438) 
Notes: Numbers in parentheses are standard errors. If an estimated coefficient or standard 

error is less than 55 10 , then it is reported as 0.0000. Bold-faced numbers indicate 
significance at the 5% level. “*” indicates significance at the 10% level. 
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Table 4. Tests for symmetric dependences and tail dependences between the high 
returns/high volumes case and the low returns/high volumes case. 
 
 CAN FRA GER JAP UK USA 

ρ ρ  2.5963 

[0.1071] 

4.2288 

[0.0397] 

2.7426 

[0.0977] 

11.5920 

[0.0006] 

2.9834 

[0.0841] 

3.6867 

[0.0548] 

φ φ  1.6048 

[0.2052] 

6.0226 

[0.0141] 

5.8412 

[0.0157] 

11.7510 

[0.0006] 

4.5285 

[0.0333] 

1.7437 

[0.1867] 
Note: Numbers in the table are Wald statistics. Numbers in brackets are p-values. 
Bold-faced numbers indicate significance at the 10% level. 2̂  ( 2̂ ) measures the 

(tail) dependence of the high returns/high volumes case. 4̂  ( 4̂ )   measures the (tail) 

dependence of the low returns/high volumes case. Bold-faced numbers indicate 
significance at the 10% level. 
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Table 5. The goodness-of-fit test of different copula models 
 
 CAN FRA GER JAP UK USA 

The Dependence-Switching Copula 
AIC 22458 # 23867 # 18419 # 21876 # 23672 # 23240 # 
BIC 22560 # 23969 # 18517 # 21977 # 23774 # 23342 # 
LV -11213 * -11918 * -9193 * -10922 * -11820 * -11604 * 

Gaussian Copula 
AIC 23819 24650 19336 23653 24308 24251 
BIC 23825 24656 19342 23659 24315 24257 
LV -11909 -12324 -9667 -11825 -12153 -12124 

Student-t Copula 
AIC 23818 24623 19316 23637 24308 24207 
BIC 23831 24636 19328 23649 24321 24219 
LV -11907 -12310 -9656 -11816 -12152 -12101 

Clayton Copula 
AIC 23820 24670 19367 23672 24329 24269 
BIC 23826 24676 19373 23679 24335 24275 
LV -11909 -12334 -9683 -11835 -12163 -12134 

Survival Clayton Copula 
AIC 23802 24658 19364 23588 24327 24255 
BIC 23809 24664 19370 23594 24333 24261 
LV -11900 -12328 -9681 -11793 -12162 -12126 

Rotated Clayton Copula 
AIC 23820 24670 19367 23672 24329 24269 
BIC 23826 24676 19373 23679 24335 24275 
LV -11909 -12334 -9683 -11835 -12163 -12134 

Rotated Survival Clayton Copula 
AIC 23785 24520 19207 23666 24235 24115 
BIC 23791 24527 19213 23672 24241 24121 
LV -11892 -12259 -9602 -11832 -12117 -12056 

Mixture Clayton Copula 
AIC 23807 24692 19412 23600 24434 24289 
BIC 23826 24711 19430 23619 24453 24308 
LV -11901 -12343 -9703 -11797 -12214 -12141 

Mixture Rotated Clayton Copula 
AIC 23792 24539 19236 23667 24255 24127 
BIC 23811 24558 19255 23686 24274 24146 
LV -11893 -12267 -9615 -11830 -12124 -12141 

Notes: LV, AIC and BIC indicate log likelihood value, Akaike information criterion 
and Bayes information criterion, respectively. “*” indicates the largest LV across 
different copula models. “#” indicates the smallest value of AIC and BIC across 
different copula models. The numbers under Clayton copula are very close to those 
under Rotated Clayton copula. The difference appears if we report values up to the 
first decimal. 
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Table 6. Threshold regression 

,  and  if . 0  

,  and  if . 0 

 

 CAN FRA GER JAP UK USA 

̂   0.0562 

(0.0171) 

0.1572 

(0.0211) 

0.2607 

(0.0208) 

0.0593 

(0.0206) 

0.2411 

(0.0174) 

0.1755 

(0.0170) 

̂   
0.4000 

(0.0877) 

0.7372 

(0.0898) 

0.6651 

(0.0971) 

0.7611 

(0.1055) 

0.6565 

(0.0888) 

1.0816 

(0.1009) 

̂   -0.7815 

(0.1036) 

-1.3122 

(0.0860) 

-1.0961 

(0.0832) 

-2.0070 

(0.2215) 

-0.8656 

(0.0471) 

-1.1742 

(0.0832) 

̂   
-0.6843 

(0.1312) 

-1.0893 

(0.1268) 

-0.5334 

(0.1208) 

-1.0351 

(0.2569) 

-0.7712 

(0.0959) 

-1.3085 

(0.2022) 

Notes: 1tX  indicates stock returns and 2tX  represents the detrended trading volumes 

using the Hodrick-Prescott filter. 	 ,  is the time-varying, smoothing correlation of 
returns and volumes. 	  ( ) and  ( ) are returns and volumes under the 
positive (negative) dependence regime with , 0 ( , 0). The standard error 
of an estimate is given in parentheses. Bold-faced numbers indicate significance at the 
5% level. 
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Table 7. Driving forces of time-varying, return-volume dependence 

 
 CAN FRA GER JAP UK USA 
 

A :     1 log logt Ht Lt tP P        

̂  0.0879 
(0.0013) 

0.1037 
(0.0022) 

0.0946 
(0.0026) 

0.1421 
(0.0017) 

0.0183 
(0.0011) 

0.1635 
(0.0025) 

1̂  -0.5419 
(0.0860) 

-1.4201 
(0.1114) 

-2.2706 
(0.1385) 

-2.1555 
(0.1096) 

-0.8758 
(0.0589) 

-3.2439 
(0.1467) 

 

B :  1 1 /t t t tX DVT       

̂  0.0921 
(0.0011) 

0.1036 
(0.0016) 

0.0704 
(0.0020) 

0.1230 
(0.0014) 

0.0151 
(0.0008) 

0.1414 
(0.0020) 

1̂  -0.0502 
(0.0034) 

-0.3396 
(0.0169) 

-0.3057 
(0.0359) 

-13.2010 
(1.3893) 

-0.0559 
(0.0032) 

-80.3316 
(4.6681) 

 

C :       1 2 1log log /t Ht Lt t t tP P X DVT          

̂  0.0912 
(0.0013) 

0.1070 
(0.0022) 

0.0955 
(0.0026) 

0.1425 
(0.0018) 

0.0185 
(0.0010) 

0.1639 
(0.0025) 

1̂  0.1198 
(0.0973) 

-0.6965 
(0.1285) 

-2.1534 
(0.1534) 

-2.0316 
(0.1240) 

-0.3845 
(0.0743) 

-2.6573 
(0.1837) 

2̂  -0.0526 
(0.0039) 

-0.0509 
(0.0047) 

-0.0749 
(0.0385) 

-3.5472 
(1.4641) 

-0.0429 
(0.0040) 

-30.2181 
(5.7246) 

Note: HtP  and LtP  are the daily highest and lowest stock price indices, respectively. 

tDVT  and | | are the daily total local currency value of shares traded and the 

absolute value of returns, respectively. Following Amihud (2002), we multiplied the 
illiquidity measure, | |/ , by 106 for all countries except Germany. The 
standard error of an estimate is given in parentheses. Bold-faced numbers indicate 
significance at the 5% level. 
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                  :i  dependence, :i  tail dependence 

 

Figure 1. The dependence structure of returns and de-trended volumes under four 

different market conditions. 
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GER                                 JAP  

   
 

 

 

UK                                  USA  

    
 

Figure 2. Detrended log volumes using the Hodrick-Prescott filter 
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Figure 3. Smoothing probabilities for the positive dependence regime of volumes and 

returns 
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Figure 4. The smoothing correlations of volumes and returns 
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