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Abstract

This paper extends the cross-sectionally augmented panel unit-root test (CIPS) developed
by Pesaran et al. (2013, Journal of Econometrics, Vol. 175, pp. 94–115) to allow for
smoothing structural changes in deterministic terms modelled by a Fourier function. The
proposed statistic is called the break augmented CIPS (BCIPS) statistic. We show that the
non-standard limiting distribution of the (truncated) BCIPS statistic exists and tabulate its
critical values. Monte-Carlo experiments point out that the sizes and powers of the BCIPS
statistic are generally satisfactory as long as the number of time periods, T , is not less than
fifty. The BCIPS test is then applied to examine the validity of long-run purchasing power
parity.

I. Introduction

The development of panel unit-root tests has been a hot research topic during the past
decade. The first generation articles assume that idiosyncratic errors are cross-sectionally
independent (Banerjee, 1999; Levin, Lin and Chu, 2002; Im, Pesaran and Shin, 2003, IPS;
Maddala and Wu, 1999) and the second generation articles focus on the tests that allow
cross-dependent errors (Chang, 2002; Breitung and Das, 2003; Phillips and Sul, 2003; Bai
and Ng, 2004; Moon and Perron, 2004; Smith et al., 2004; Choi and Chue, 2007; Pesaran,
2007; Pesaran, Smith andYamagata, 2009, 2012, 2013). Nonetheless, these articles assume
no structural changes in the models.

Two recent papers proposed panel unit-root tests that allow for multiple structural
changes and cross-sectional dependence. Bai and Carrion-i-Silvestre (2009) propose a
modified Sargan–Bhargava (1983, MSB) test in the panel setting. Although this test is
invariant to both mean and trend break parameters, the limiting distribution of the indi-
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vidual MSB (MSB*(�)) test depends on the number of structural breaks. Following the
cross-sectionally augmented procedure of Pesaran (2007), Im, Lee and Tieslau (2010, ILT)
develop an LM-type panel unit-root test to account for possible heterogeneity in both the
level and the trend of the series. The ILT test is invariant to nuisance parameters, but its
limiting distribution depends on the number of trend breaks.

Instead of adopting dummy variables to capture discrete breaks, several articles
develop unit-root tests by applying Gallant’s (1981) flexible Fourier form to take into
account smoothing breaks in the deterministic components (Becker, Enders and Hurn,
2004; Becker, Enders and Lee, 2006; Enders and Lee, 2012a,b; Rodrigues and Taylor,
2012). Enders and Lee (2012a,b) point out several advantages of the Fourier form ap-
proximation. First, it works reasonably well for types of breaks often used in economic
analysis. Second, the Fourier function with a single-frequency component (�) can be a
reasonable approximation for breaks of an unknown form even if the function itself is not
periodic. Third, it involves only the determination of the appropriate component in the
model and hence avoids the complication of selecting break dates, the number of breaks
and the form of breaks. Enders and Lee (2012a,b) find that their proposed tests are robust
to a variety of possible break mechanisms in the deterministic trend function of unknown
forms and numbers. Their Fourier tests complement the unit-root tests using dummy vari-
ables.

This paper extends Pesaran et al.’s (2013) multifactor error structure model to allow
for smoothing breaks in deterministic components and then develops a new simple panel
unit-root test that accommodates cross-sectional dependence among variables and smooth-
ing changes in deterministic components. We first develop the breaks and cross-sectional
dependence augmented ADF (BCADF) statistic and its average statistic by generaliz-
ing their cross-sectionally augmented ADF (CADF) regression to incorporate a single-
frequency Fourier function with heterogeneous amplitudes. The breaks and cross-sectional
dependence augmented IPS (BCIPS) statistic is proposed by averaging the BCADF statis-
tics across individuals. An important advantage of the tests is their simplicity in empirical
applications.

To analyse the impact of Fourier terms in the BCADF regression in both finite and
infinite T , new asymptotic results of the BCADF and BCIPS statistics are derived based on
the sequential and joint limit approaches respectively. In the case of serially uncorrelated
errors, Theorems 1 and 2 show that the asymptotic distribution of the BCADF statistic does
not depend on nuisance parameters when the number of individuals, N , tends to infinity
under a fixed T or when both N and T sequentially and jointly tend to infinity. Theorem 3
examines the limiting distribution of the CADF statistic provided by Pesaran et al. (2013)
when Fourier form breaks exist in the data-generating process (DGP) but are ignored in the
regression. We show that, because of the omitted-variable bias, the asymptotic distribution
of the CADF statistic under a fixed T depends on nuisance parameters even when N tends
to infinity, but the dependence vanishes when both N and T approach infinity. Besides, the
limiting distribution of the (truncated) BCIPS statistic is shown to exist. Theorem 4 shows
that the BCADF statistic, under first-order autocorrelated errors, has the same asymptotic
distribution as one that is obtained based on serially uncorrelated errors when both N
and T tend to infinity. Furthermore, this paper extends the discussion to the case with a
general autoregressive and moving average, ARMA(l, s), specification of errors. In such a
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case, we suggest augmenting the BCADF regression with the lag order p. Although the
asymptotic distribution of the BCIPS statistic exists, it is not analytically tractable since
the non-attenuation in the dependence across individual BCADF statistics invalidates the
application of the standard central limit theorem.This paper, therefore, tabulates the critical
values of the BCIPS statistic under different N , T , � and p by stochastic simulations and
then explores its finite sample properties via Monte-Carlo simulations. The simulation
results support that the limiting distribution of our proposed statistic does not depend on
nuisance parameters, that the sizes (powers) of the statistic are generally good as long as
T � 50 (T � 100), and that the power of the test increases with the Fourier frequency. On
the other hand, the CIPS statistic of Pesaran et al. (2013) may reveal serious size distortions
when the magnitude of break amplitudes is medium or large even for T = 200. Finally,
the BCIPS test is applied to investigate the long-run purchasing power parity (PPP) over
the post-Bretton Woods period.

The remainder of the paper is organized as follows. Section II sets out the basic dy-
namic heterogeneous panel data model with smooth breaks. The cross-sectional depen-
dence across individuals is modelled by unobservable stationary common factors, and the
smooth breaks in deterministic terms are captured by a single frequency Fourier func-
tion. In section III, we derive the null distribution of the individual BCADF statistic with
serially uncorrelated errors, discuss the BCADF-based panel unit-root test and extend our
results to the case with serially correlated errors. We also examine the limiting distribution
of Pesaran et al.’s (2013) CADF statistic when Fourier form breaks exist in the DGP but are
ignored in the regression. Section IV examines the finite-sample properties of the proposed
BCIPS test via Monte-Carlo simulations. Section V provides an empirical application.
Finally, section VI concludes. The proofs of the theorems are reported in Appendix S1.
The simulated critical values and the finite sample properties of the BCIPS test under
a linear trend model are reported in Appendix S2. Both supplementary appendices are
not included in the paper but they are available in the journal webpage. Throughout this

paper, the Fourier frequencies considered are assumed to be integer values only,
N→ de-

notes convergence as N →∞;
T→ denotes convergence as T →∞; (N , T )seq →∞ denotes

sequential convergence as N → ∞ (first) and then T → ∞; (N , T )j → ∞ denotes joint
convergence as N and T →∞; [Tr] denotes the largest integer not exceeding Tr and ‖A‖
denotes tr(AA′)1/ 2.

II. Breaks and the cross dependence panel data model

Let yit be an observation on the ith cross-sectional unit at time t and suppose that it is
generated according to the following simple dynamic linear heterogeneous panel data
model with an unknown time-dependent intercept term �i(t):

(1−�iL)(yit −�i(t)− �it)=uit , uit = �′
iyft + "iyt , t =1, .., T ; i =1, .., N , (1)

where �it is a linear trend, ft is an m × 1 unobserved stationary stochastic common factor, �iy

is the associated factor loading reflecting the degree of contemporaneous correlation across
individuals, and "iyt is an idiosyncratic error. We begin our analysis with a DGP containing
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only a single Fourier frequency (�) since it mimics a variety of breaks in deterministic
components (Enders and Lee, 2012a):1

�i(t)=�i,�,t =�i +	iy,1 sin(2
�t/T )+	iy,2 cos(2
�t/T ), (2)

where � is the frequency parameter reflecting the number of cycles in the sample period and
is assumed to be homogeneous across agents, and 	iy,1 and 	iy,2 measure the heterogeneous
amplitude and displacement of sinusoidal components across agents, respectively. �i,�,t in
equation (2) captures smooth breaks in the intercept.2 Assuming a homogeneous � across
individuals is not so restrictive since it does not necessarily imply an identical number of
breaks across individuals. This is because variations in 	iy,1 and 	iy,2 accommodate, to some
degree, different breaks for each individual. Substituting equation (2) into (1), we obtain:

�yit =�iyi,t−1 −�i�
′
iydt +�i�

′
iy�dt + �′

iyft + "iyt , t =1, .., T ; i =1, .., N , (3)

where �yit = yit − yi,t−1, �i = �i − 1, dt = (1, sin(2
�t/T ), cos(2
�t/T ), t)′ is a 4 × 1
vector of deterministic common components, �dt = (0,� sin(2
�t/T ),� cos(2
�t/T ), 1)′

and �iy = (�i,	iy,1,	iy,2, �i)′. Without loss of generality, it is assumed that d0 = 0. The
unit-root hypothesis, �i = 1 for all i, can be expressed as:

H0 :�i =0, ∀i, (4)

against the possibly heterogeneous alternative,

H1 :�i < 0, i =1, 2,…, N1;�i =0, i =N1 +1, N1 +2,…, N . (5)

Under the above null hypothesis that �i = 0 (�i = 1), equation (3) becomes

�yit =�′
iy�dt + �′

iyft + "iyt , t =1, .., T ; i =1, .., N .

After recursively substituting yi,t−j, j = 1,…, t − 1 in the above equation and assuming
that d0 = 0, we can obtain the following equation for yit:

yit = yi0 +�′
iydt + �′

iysft + siyt , (6)

where sft = f1 + f2 + · · · + ft and siyt = "iy1 + "iy2 + · · · + "iyt . Therefore, under H0, yit

is composed of a deterministic component with a Fourier element, yi0 + �′
iydt; a common

stochastic component, sft ∼ I (1); and an idiosyncratic component, siyt ∼ I (1). We do not
assume that 	iy,1 = 	iy,2 = 0 under the null hypothesis, and hence heterogeneous breaks
exist under the null and alternative hypotheses of equations (4) and (5) respectively. Our
proposed tests in the following section avoid the possibility of spuriously rejecting a unit-
root hypothesis (Enders and Lee, 2009).

1
Allowing for two frequency parameters, �1 = 1 and �2 = 2, is important if breaks are sharp (Enders and Lee,

2012a).
2
Introducing a time trend, �i t, in equation (1) removes the restriction that the starting and ending values of the

Fourier function are the same. Changes in the intercept and slope of a deterministic function can be captured by
the Fourier approximation. Hence, our proposed panel unit-root tests allow for breaks in both the level and trend of
the series under investigation.
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III. Breaks and cross dependence augmented unit-root tests

Theorems 1–4 in this section derive the asymptotic distribution of the unit-root test statistic
under the null hypothesis in equation (4) for the ith individual. Note that all of the order
results and proofs of theorems given in Appendix S1 are derived from the case where
dt = (1, sin(2
�t/T ), cos(2
�t/T ))′, t = 1, 2,…, T . The asymptotic results for the case
where dt = (1, sin(2
�t/T ), cos(2
�t/T ), t)′ can be derived in a similar manner.

Unit-root tests in the presence of multiple factors

In the case where m unobservable factors (m > 1) exist, we need at least m equations to
solve for them. Following Pesaran et al. (2013), we assume that, in addition to yit , there
exist k (k + 1 � m) additional variables, xit , i = 1,…, k , depending on at least the same
set of common factors, sft . Suppose that the k × 1 vector of additional variables follows
the general linear process:

�xit =Aix�dt +�ixft +εixt , i =1, 2,…, N ; t =1, 2,…, T , (7)

where xit = (xi1t , xi2t ,…, xikt)′, Aix = (aix1, aix2,…, aixk)′, �ix = (�ix1, �ix2,…, �ixk)′, and εixt is
the idiosyncratic component of xit and is distributed independently of "iys for all i, t and s.
The level equation of xit can be obtained by recursively substituting equation (7):

xit = xi0 +Aixdt +�ixsft + sixt , i =1, 2,…, N ; t =1, 2,…, T , (8)

where sixt = ∑t
s=1 εixs. Combining equations (6) and (8), we have the null data generating

process:

zit = zi0 +Aidt +�isft + sit , (9)

where zit = (yit , x′it)
′, Ai = (�iy,A′

ix)
′ ≡ (�i,�i,1,�i,2, �i), �i = (�iy,�

′
ix)

′, and sit = (siyt , s′ixt)
′.An

assumption for the initial condition zi0 is given in Assumption 4 appearing before equation
(16).

To obtain observable proxies for the unobserved common effect ft , we first combine
equations (3) and (7) and present the resulting equations in matrix form. The difference
equation (not necessary under the null hypothesis) of zi is:

�zi = zi,−1B′
i +DC′

i +F�′
i +�DÄ′

i +εi, (10)

where �zi = (�zi1,�zi2,…,�ziT )′, zi,−1 = (zi0, zi1,…, ziT−1)′,Bi = (�i, 0′)′,D = (d1, d2,…, dT )′,
Ci = (−�i�

′
iy, 0′)′, F = (f1, f2,…, fT )′, �D = (�d1,�d2,…,�dT )′, Äi = (�i�iy,A′

ix)
′ and εi =

(εi1,εi2,…,εiT )′ with εit = ("iyt ,ε′
ixt)

′. Taking the cross-sectional average of equation (10),
we obtain:

�z= z−1B+DC+F�
′ +�DÄ

′ +ε, (11)

where �z = N −1
∑N

i=1 �zi, z−1B = N −1
∑N

i=1 zi,−1Bi, C = N −1
∑N

i=1 Ci, � = N −1
∑N

i=1 �i,
Ä = N −1

∑N
i=1 Äi and ε = N −1

∑N
i=1 εi. If � has full rank then F in equation (11) can be

solved as:

F= (�z− z−1B−DC−�DÄ
′ −ε)�(�

′
�)−1. (12)

© 2015 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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Pesaran et al. (2013) showed that "
N−→0 for each t. Hence, we obtain:

F− (�z− z−1B−DC−�DÄ
′
)�(�

′
�)−1 N−→0. (13)

The linear combination of (z−1,�z,D,�D) in equation (13) is a reasonable proxy for ft .
After substituting ft in equation (3) by z−1, �z, D and �D, and using the results of (L5) and
(L6) in Appendix S2, we suggest regressing the following breaks and cross dependence
augmented Dickey–Fuller equation for each individual by OLS:3

�yit = ci,0 + ci,1 sin(2
�t/T )+ ci,2 cos(2
�t/T )+ c′i,3zt−1

+ c′i,4�zt +biyi,t−1 + eit , t =1, 2,…, T .
(14)

The t-statistic of the estimate of bi (b̂i) is applied to examine the unit-root hypothesis and
is expressed as:

ti(N , T )= �y′iMzyi,−1

�̂i(y′i,−1Mzyi,−1)1/ 2
, (15)

where �yi = (�yi1,�yi2,…,�yiT )′, yi,−1 = (yi0, yi1,…, yi,T−1)′, Mz = IT − Z(Z′Z)−1Z′,
Z= (�z, �,�1,�2, z−1), �= (1, 1,…, 1)′,�1 = (sin(2
�1/T ), sin(2
�2/T ),…, sin(2
�T/T ))′,
�2 = (cos(2
�1/T ), cos(2
�2/T ),…, cos(2
�T/T ))′, �z = (�z1,�z2,…,�zT )′, z−1 =
(z0, z1,…, zT−1)′, and �̂2

i = �y′iMi, z�yi

T−2k−6 , in which Mi,z = IT −Gi(G′
iGi)−1G′

i and Gi = (Z, yi,−1).
Following Pesaran et al. (2013), the required assumptions for deriving the null distri-

bution of the ti(N , T ) statistic are given as follows:

Assumption 1 (Idiosyncratic errors). The idiosyncratic error, "iyt , with a zero mean,
a constant variance �2

i , (0 < �2
i � K) and a finite fourth-order moment, is independently

distributed across i and t and is independent of fs for all i, t, s.

Assumption 2 (Common factors). The m × 1 vector of common factors, ft , follows a
covariance stationary process with absolute summable autocovariance and is distributed
independently of "iys for all i, t and s. Specifically, we assume that ft = �(L)vt , where
�−1(1)≡�−1

f exists and vt ∼ i.i.d.(0,�m) has a finite fourth-order moment.

Assumption 3 (Factor loadings). ‖Ai‖ � K and ‖�i‖ � K for all i, with the factors
normalized such that E(ftf

′
t) = Im.

Assumption 4 (Initial conditions). E‖sf 1‖ � K , E‖zi0‖ � K and E‖si1‖ � K for all i.

Assumption 5 (Rank condition). The (k +1)×m matrix of factor loadings, �i, satisfies
the following condition:

rank(�)=m� k +1, for any N and

�
N−→�*,

(16)

where �* is a fixed bounded matrix with rank m.

3
The terms in �D can be ignored since � sin(2
�t/T ) = 2
�/T cos(2
�t/T ) + o(1) and � cos(2
�t/T ) =

−2
�/T sin(2
�t/T ) + o(1). We appreciate a reviewer’s comment.
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Assumption 6 (Fourier amplitude coefficients). The Fourier amplitude coefficients �i,1

and �i,2 are non-random parameters.

For fixed N and T , the distribution of ti(N , T ) depends on nuisance parameters through
their effects on the matrices Mz and Mi,z. However, Theorems 1 and 2 below show that
this dependence vanishes either as N →∞, for a fixed T , or as N and T →∞, jointly.
In the case of a fixed T , however, the effect of the initial cross-sectional mean z0 must be
eliminated in order to ensure that ti(N , T ) does not depend on nuisance parameters.4 This
can be achieved by working with the deviation from z0, zit − z0.

Theorem 1. Let zit be generated based on equation (9) with the cross-sectional mean
of the initial observation z0 being zero. Suppose that Assumptions 1–6 hold. Then, the
limiting distribution of ti(N , T ) given by (15) will be free of nuisance parameters as
N →∞ for any fixed T > 2k + 6. In particular, we have

ti(N , T )
N−→

"′
iysiy, −1

�2
i T −q′

iT �−1
fT hiT(

"′
iy"iy

�2
i (T−2k−6) − d ′

iT �−1
iT diT

T−2k−6

)1/ 2

×
(

s′
iy, −1siy, −1

�2
i T 2 − h′

iT �−1
fT hiT

)1/ 2 , (17)

where ε′
iy = ("iy1, "iy2,…, "iyT ), s′iy,−1 = (0, siy,1,…, siy,T−1),

qiT =
[

ε′
iyF

�i
√

T

ε′
iy�

�i
√

T

ε′
iy�1

�i
√

T

ε′
iy�2

�i
√

T

ε′
iysf ,−1

�iT

]′
,diT ≡

[
q′iT

s′iy,−1εiy

�2
i T

]′
, (18)

hiT =
[
s′iy,−1F
�iT 3/ 2

s′iy,−1�

�iT 3/ 2

s′iy,−1�1

�iT 3/ 2

s′iy,−1�2

�iT 3/ 2

s′iy,−1sf , −1

�iT 2

]′
, (19)

�fT =

⎡
⎢⎢⎢⎢⎢⎢⎣

F′F
T

F′
�

T
F′�1

T
F′�2

T
F′′ sf , −1

T 3/ 2

�′F
T

�′

T

�′�1

T
�′�2

T
�′sf , −1

T 3/ 2

�′
1F
T

�′
1�

T
�′

1�1

T
�′

1�2

T
�′

1sf , −1

T 3/ 2

�′
2F
T

�′
2�

T
�′

2�1

T
�′

2�2

T
�′

2sf , −1

T 3/ 2

s′f , −1F
T 3/ 2

s′f , −1�

T 3/ 2

s′f , −1�1

T 3/ 2

s′f , −1�2

T 3/ 2

s′f , −1sf , −1

T 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, and (20)

�iT =
[

�fT hiT

h′
iT

s′iy, −1siy, −1

�2
i T 2

]
. (21)

Proof. See Appendix S1.

Theorem 2. Let zit be generated based on equation (9) with the cross-sectional mean
of the initial observation z0 being zero. Suppose that Assumptions 1–6 hold. Then, the
limiting null distribution of ti(N , T ) given by equation (15) will be free of nuisance
parameters. In particular, the ti(N , T ) statistic has the same sequential ((N , T )seq →∞)
and joint ((N , T )j →∞) limiting distribution, referred to as the BCADF distribution,

4
The importance of initial values to the power of the standardized, averaged Dickey–Fuller panel unit root statistic

of IPS (2003) is discussed in Harris et al. (2010). A further investigation of this issue for a model with Fourier form
breaks and cross-sectionally dependent errors is worthwhile, but it will not be pursued in this paper.

© 2015 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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given by:

BCADFif =

∫ 1

0
Wi(r)dWi(r)− q′

if �
−1
f hif(∫ 1

0
W 2

i (r)d(r)−h′
if �

−1
f hif

)1/ 2 , (22)

where

qif =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wi(1)

−2
�
∫ 1

0
cos(2
�r)Wi(r)dr

W (1)+2
�
∫ 1

0
sin(2
�r)Wi(r)dr∫ 1

0
[Wf(r)]dWi(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

hif =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
Wi(r)dr

−2
�

(∫ 1

0
cos(2
�r)

[∫ r

0
Wi(s)ds

]
dr

)
∫ 1

0
Wi(s)ds +2
�

∫ 1

0
sin(2
�r)

[∫ r

0
Wi(s)ds

]
dr∫ 1

0
[Wf(r)]Wi(r)dr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

�f =
[
H3×3 R3×m

R′
m×3 Jm×m

]
(25)

with

H3×3 =
[1 0 0

0 1/ 2 0
0 0 1/ 2

]
, R3×m =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
[Wf(r)]′dr

−2
�

(∫ 1

0
cos(2
�r)

[∫ r

0
[Wf(s)]′ds

]
dr

)
∫ 1

0
[Wf(s)]′ds +2
�

∫ 1

0
sin(2
�r)

[∫ r

0
[Wf(s)]′ds

]
dr

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and Jm×m = ∫ 1
0 [Wf(r)][Wf(r)]′dr. Here, Wi(r) and Wf(r) are scalar and m-dimensional

standard Brownian motions, respectively. Wi(r) andWf(r) are mutually independent. For
the joint-limiting distribution to hold, it is also required that N/T → l as (N , T )j →∞,
where l is a non-zero finite positive constant.

Proof. See Appendix S1.

Theorem 2 shows that the asymptotic distribution of ti(N , T ) depends only on the fre-
quency parameter, �, but is invariant to all other parameters in the DGP (equation (9)).
Hence, the ti(N , T ) statistic is a pivotal statistic. It is worth noting that the ti(N , T )s,

© 2015 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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for i = 1,…, N , are dependently distributed with the same degree of dependence since
BCADFif and BCADFjf , ∀i 
= j (i, j ∈ N ), are nonlinear functions of the common pro-
cess Wf(r), as can be seen from equations (22)–(25). Therefore, the standard central limit
theorem cannot be applied to construct the standardized panel statistic based on the cross-
sectional average of ti(N , T )s because of the non-attenuation in the dependence across
ti(N , T )s.

Remark 1. If we assume a specific frequency, �i, for individual i such that �i 
=
�j, ∀i 
= j, i, j ∈ N , the individual unit root test statistic is denoted as ti(N , T ,�i). The
limiting distribution of ti(N , T ,�i) depends on the frequency component �i, and its proof
is sketched in Appendix S1. Because the limiting distributions of ti(N , T ,�i)s, ∀i, depend
on the common process Wf(r), they are not cross-sectionally independent. Hence, the
distribution of the standardized panel statistics is non-standard even for sufficiently large
N . Since the critical values of our proposed panel unit root test can only be constructed
by stochastic simulation, it is not empirically feasible to simulate critical values for all
possible combinations of �i (i = 1,…, N ) across individuals.

Pesaran et al.’s (2013) CADF Statistic under Fourier Form Breaks

Leybourne, Mills and Newbold (1998) and Leybourne and Newbold (2000) show that the
standard Dickey–Fuller tests lead to a spurious rejection of the unit root hypothesis if a
single instantaneous break occurs in the beginning of the sample. It is, therefore, interesting
to examine the limiting distribution of the CADF test provided by Pesaran et al. (2013)
and the consequence of its finite sample performance when Fourier form breaks appear in
the DGP.

Theorem 3. Suppose Assumptions 1–6 hold and zit is generated based on equation (9).
Let tPSY ,B

i (N , T ) be the statistic for testing the unit-root hypothesis when Fourier form
breaks exist in the DGP, and it is the t-statistic of b̂i in the following cross-sectionally
augmented Dickey–Fuller regression: �yit = ci,0 + c′i,3z̄t−1 + c′i,4�z̄t + biyi,t−1 + eit .
Then, as N →∞ for any fixed T > 2k + 4, we have:

tPSY ,B
i (N , T )

N−→
ε′

iysiy, −1

�2
i T − ◦

q
′
iT �−1

fT

◦
hiT

J p*
1 × J p*

2

⊕ O(T −1/ 2)

O(T −1/ 4)
, (26)

where ◦
qiT = ( "′

iyF
�i

√
T

"′
iy�

�i
√

T

"′
iysf , −1

�iT

)′
,

◦
hiT = ( s′iy, −1F

�iT 3/ 2

s′iy, −1�

�iT 3/ 2

s′iy, −1sf , −1

�iT 2

)′
, giT =

( ◦
qiT
s′iy, −1"iy

�2
i T

)
,

�fT =

⎛
⎜⎝

F′F
T

F′
�

T
F′sf , −1

T 3/ 2

�′F
T 1 �′sf , −1

T 3/ 2

s′f , −1F
T 3/ 2

s′f , −1�

T 3/ 2

s′f , −1sf , −1

T 2

⎞
⎟⎠,QiT =

(
�fT

◦
hiT

◦
h

′
iT

s′iy, −1siy, −1

�2
i T 2

)
, J p*

1 = (
ε′

iyεiy

�2
i (T−2k−4) − g′

iTQ
−1
iT giT

T−2k−4 )1/ 2,

and J p*
2 = (

s′iy, −1siy, −1

�2
i T 2 −◦′

hiT �−1
fT

◦
hiT )1/ 2. The notation ‘⊕’ is adapted from the Farey sequence

denoting (a/b) ⊕ (c/d) = (a + c)/ (b + d). If next to N , T also tends to infinity, then
tPSY ,B
i (N , T ) has the following sequential limiting distribution:
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tPSY ,B
i (N , T )

(N ,T )seq−→
∫ 1

0 Wi(r)dWi(r)−�′
ivG

−1
v �iv(∫ 1

0 W 2
i (r)dr −�′

ivG−1
v �iv

)1/ 2 , (27)

where

�iv =
(

Wi(1)∫ 1
0

[
Wf(r)

]
dWi(r)

)
,�iv=

( ∫ 1
0 Wi(r)dr∫ 1

0

[
Wf(r)

]
Wi(r)dr

)
,

Gv=
(

1
∫ 1

0

[
Wf(r)

]′
dr∫ 1

0

[
Wf(r)

]
dr

∫ 1
0

[
Wf(r)

] [
Wf(r)

]′
dr

)
.

The right-hand side of equation (27) is the same as the limiting distribution of the CADF
statistic proposed by Pesaran et al. (2013,Theorem 2.1) when there is no break in the DGP.

Proof: See Appendix S1.

The limiting distribution of tPSY ,B
i (N , T ) under a fixed T includes the bias terms Op(T −1/ 2)

and Op(T −1/ 4), which are the finite-sample biases of the slope and standard error estimates
respectively.These bias terms arise from omitting break terms in Pesaran’s cross-sectionally
augmented regression, but they disappear as T tends to infinity. However, due to the slow
rate of convergence (in the Farey sums of ⊕O(T −1/ 2)

O(T −1/ 4) ), these biases could be substantial even
in finite T with infinite N when amplitude values are large. It is straightforward to show
that under a fixed T , Op(T −1/ 4) is positive but Op(T −1/ 2) can be either positive or negative
depending on the relative influence of the factor loadings (�i) and the parameters of Fourier
terms (Ai). Therefore, it is hard to predict the direction and magnitude of the size distortions
in finite samples for Pesaran et al.’s (2013) CIPS test when smooth breaks appear in the
DGP.A trivial fact fromTheorem 3 is that the finite sample bias of the CIPS test is generally
small when the amplitude of the breaks is small. However, the test may either seriously
under- or over-reject the unit-root hypothesis in finite samples (T ) when amplitude values
are large. Our simulation results in Table 2 provide several cases to indicate that the size
distortions of the CIPS test are serious under commonly used sample sizes (T = 100 and
T = 200) when amplitude values are either medium or large.

BCADF-based panel unit-root tests

To develop a panel unit-root test, this paper considers the breaks and cross-sectional
dependence augmented version of the IPS test (BCIPS):

BCIPS(N , T )= 1

N

N∑
i=1

ti(N , T ), (28)

and considers the mean deviation:

D(N , T )=N −1
N∑

i=1

(
ti(N , T )−BCADFif

)
.

© 2015 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



A simple panel unit-root test with breaks 11

There is no guarantee that D(N , T ) = op(1) for N and T sufficiently large unless the ti(N , T )
in equation (28) have finite moments for all N and T above some finite threshold values,
say, N0 and T0. However, it is difficult to establish such moment conditions even under the
case with cross-sectionally independent observations (IPS, 2003).

Following Pesaran (2007) and Pesaran et al. (2013), we construct the truncated version
of the BCIPS statistic:

BCIPS*(N , T )= 1

N

N∑
i=1

t*
i (N , T ), (29)

where

t*
i (N , T )= ti(N , T ), if −M1 < ti(N , T ) < M2,

t*
i (N , T )= −M1, if ti(N , T )�−M1,

t*
i (N , T )=M2, if ti(N , T )�M2.

M1 and M2 are two positive constants such that Pr(−M1 < ti(N , T ) < M2) is sufficiently
large.5 Following the arguments in Pesaran et al. (2013), we can show that BCIPS*(N , T )
converges almost surely to a distribution that is free of nuisance parameters.6 The distribu-
tions of the BCIPS statistic and its truncated counterpart, BCIPS*, are non-standard even
for sufficiently large N . This is due to the dependence of the individual BCADFif on the
common process Wf(r), invalidating the application of the standard central limit theorem
to BCIPS or BCIPS*. Our results are in contrast to those of IPS under cross-sectional inde-
pendence, where a standardized version of ADF was shown to be normally distributed for
N sufficiently large. Although the limiting distribution of BCIPS*(N , T ) is not analytically
tractable, it can be readily simulated by using equation (29).

Unit-root tests in the presence of a single factor

If there is only a single factor in the DGP, i.e. m = 1 and ft = ft in equation (1), as that
of Pesaran (2007), no additional variable (xit) is needed to approximate the unobservable
factor, i.e. zt−1 = yt−1 and �zt = �yt . In such a case, the rank condition in Assumption 5
requires that � = 1

N

∑N
i=1 �iy 
= 0 and that ft can be measured by a linear combination of

sin(2
�t/T ), cos(2
�t/T ),�yt and yt−1. We therefore regress the following breaks and cross
dependence augmented Dickey–Fuller equation using OLS:

�yit = ci,0 + ci,1 sin(2
�t/T )+ ci,2 cos(2
�t/T )+ ci,3yt−1

+ ci,4�yt +biyi,t−1 + eit.
(30)

The t-statistic of the estimate of bi(b̂i) in equation (30) can be expressed as:

5
The construction of M1 and M2 is described in Pesaran (2007).

6
This distribution depends on M1, M2 andWf(r).The included Fourier terms are deterministic functions which only

affect the conditional expectation of CADF*
if in Pesaran et al. (2013), i.e. E(CADF1f |Wf). It is, therefore, appropriate

to discuss the convergence of BCIPS*(N , T ) by following their arguments for the convergence of CIPS*(N , T ).
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t♦
i (N , T )= �y′iM

♦
z yi,−1

�̃i(y′i,−1M♦
z yi,−1)1/ 2

, (31)

whereM♦
z = IT −Z♦(Z′♦Z♦)−1Z′♦, Z♦ = (�y, �,�1,�2, y−1), �y = (�y1,�y2,…,�yT )′, y−1 =

(y0, y1,…, yT−1)′, �̃2
i = �y′iM

♦
i, z�yi

T−6 ,M♦
i,z = IT − G♦

i (G′♦
i G

♦
i )−1G′♦

i and G♦
i = (Z♦, yi,−1). The lim-

iting distribution of t♦
i (N , T ) under the null hypothesis is obtained from the results in

Theorem 2 by replacing the m-dimensional standard Brownian motion,Wf(r), with a scalar
independent standard Brownian motion, Wf (r).

De Silva, Hadri and Tremayne (2009) point out two conditions for Pesaran’s (2007)
single factor CIPS (or CADF) test to perform adequately. First, there is only one single
factor in the model. Second, the average of the factor loadings (across i) needs to be
different from zero, i.e. � = 1

N

∑N
i=1 �iy 
= 0. Furthermore, they criticize that Pesaran’s

(2007) single factor CIPS test displays poor empirical performance when these conditions
are not satisfied.7 The same criticism is expected to hold in the single-factor Fourier form
panel unit-root test. By allowing for multiple factors in the model, our multi-factor BCIPS
tests are free from the criticism of assuming � 
=0.

The case with serially correlated errors

Our discussion in section ‘Unit-root tests in the presence of multiple factors’ can be ex-
tended to the case where individual-specific errors are serially correlated. Following Pe-
saran (2007), two different specifications for serially correlated errors are given as follows:

uit =�iui,t−1 +�iyt , �iyt = �′
iyft + "iyt; (32)

uit = �′
iyft +�iyt , �iyt =�i�iy,t−1 + "iyt , (33)

where "iyt is an idiosyncratic error. We focus our discussion on the specification of equation
(33). The asymptotic distribution to be derived in this section can be adapted to deal with
both specifications in equations (32) and (33). By replacing uit in equation (1) with (33),
equation (3) can be rewritten as:

�yit =�iyi,t−1 −�i�
′
iydt +�i�

′
iy�dt + �′

iyft +�iyt , t =1, .., T , i =1, .., N . (34)

We assume the coefficient �i in equation (33) to be homogeneous across i, but it could be
relaxed at the cost of more complex mathematical details. Under the null hypothesis that
�i = 0, with �i = �, equation (34) becomes:

�yit =��yi,t−1 +�′
iy(�dt −��dt−1)+ �′

iy(ft −�ft−1)+ "iyt. (35)

To test the null hypothesis in equation (4), this paper estimates the following breaks and
cross-sectional dependence augmented ADF regression (BCADF) for each individual:

�yit = ci,0 + ci,1 sin(2
�t/T )+ ci,2 cos(2
�t/T )+ c′i,3zt−1

+ c′i,4�zt + c′i,5�zt−1 + ci,6�yi,t−1 +biyi,t−1 + eit , t =1, 2,…, T .
(36)

7
We are grateful to a reviewer for bringing this to our attention.
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The t-statistic of the estimate of bi (b̂i) is then applied to examine the unit-root hypothesis,
and it can be written as:

t�
i (N , T )= �y′iM

�
z yi,−1

�̂i(y′i,−1M �
z yi,−1)1/ 2

, (37)

where �̂2
i = �y′iM

�

i, z�yi

T−(3k+6) , M �
z = IT − Z�(Z�′Z�)−1Z�′, Z�′ = (�yi,−1,�z−1,�z, �,�1,�2, z−1),

M �
i,z = IT − G�

i (G′�
i G

�
i )−1G′�

i and G�
i = (Z�, yi,−1). The limiting distribution of t�

i (N , T ) does
not depend on nuisance parameters as stated in the following theorem.

Theorem 4. Let zit be generated based on equations (7) and (35) with the cross-sectional
mean of the initial observation z0 being zero and |�| < 1. Suppose that Assumptions
1–6 hold. Then t�

i (N , T ) in equation (37) has the same sequential and joint limiting
distribution, given by equation (22), as obtained under � = 0.

Proof. See Appendix S1.

The BCIPS test can be applied to the case with serially correlated errors since t�
i (N , T )

in equation (37) has the same limiting distribution as that of equation (22).The specification
of the errors in equation (33) can be generalized to an ARMA(l, s) process:

(1−�i,1L−· · ·−�i,lL
l)�iyt = (1+�i,1L+· · ·+�i,sL

s)"iyt ,

in which all roots of (1 − �i,1z − · · · − �i,lzl) = 0 and (1 + �i,1z + · · · + �i,szs) = 0 lie
outside the unit circle. In such a case, we suggest the following BCADF regression:8

�yit = ci,0 + ci,1 sin(2
�t/T )+ ci,2 cos(2
�t/T )+ c′i,3zt−1 + c′i,4�zt

+
p∑

j=1

c′i,5,j�zt−j +
p∑

j=1

ci,6,j�yi,t−j +biyi,t−1 + eit , t =1, 2,…, T ,
(38)

where the value for the lagged order p is chosen to ensure that there is no remaining serial
correlation in the residuals.9 It is easily seen that the limiting distribution of t�

i (N , T ) with
N → ∞ for a fixed T depends on the lag augmentation order p in the regression. We,
therefore, construct critical values of t�

i (N , T ) for different values of p.

Remark 2. The homogeneity assumptions on the Fourier frequencies and the lag orders
of the model across individuals, inherited from Pesaran et al. (2013), are restrictive. A
feasible procedure to relax the above homogeneity assumptions is to apply the de-factor
method in the PANIC (panel analysis of non-stationarity in the idiosyncratic and common
components) proposed by Bai and Ng (2004). The sketch of this procedure is given in
Appendix S1. However, in the case without structural breaks, Pesaran et al. (2009, 2012)
show that their proposed tests have correct sizes for all combinations of N and T , but
the tests proposed by Bai and Ng (2004) over-reject the null hypothesis in many cases,

8
This is also based on the assumption that �i, j = �j , j = 1,…, l and �i, j = �j , j = 1,…, s, ∀i = 1,…, N .

9
It is necessary to let p be a function of T and N to ensure consistent estimates in equation (38). (See e.g. Said and

Dickey (1984) and Bai and Ng (2004)). The detailed derivation of this condition poses additional technical difficulties
and will not be pursued here.
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especially when the model includes a linear trend. The suggested procedure in this remark
is expected to suffer the same size problem too.

Critical values of the BCADF test for different values of N , T , �, k and p are obtained by
stochastic simulation. The asymptotic distribution of t�

i (N , T ) depends only on the Fourier
frequency, �, but is invariant to Ai, �i, �(L) or �i. Without loss of generality, we set Ai = 0,
�i = 0, �(L) = I and �i = � = 1.

To simulate the critical values of the BCIPS statistic, the series of yits are generated by
yit = yi,t−1 + "iyt for i = 1,…, N , and t = 1, 2,…, T with yi0 ∼ i.i.d.N (0, 1).The jth element
of the k × 1 vector of additional regressors, xijt , is generated based on xijt = xij,t−1 + "ixjt ,
i = 1,…, N ; j = 1, 2,…, k; t = 1, 2,…, T with xij,0 ∼ i.i.d.N (0, 1).10 Here "iyt and "ixjt are
both i.i.d.N (0, 1) and independent of each other. After generating yit and xijt , we regress
�yit on an intercept, sin(2
�t/T ), cos(2
�t/T ), z′t−1, [�z′t ,…, �z′t−p], [�yi,t−1,…, �yi,t−p] and
yi,t−1 over the frequency � = 1,…, 5 and the sample t = 1,…, T . The ti(N , T ) statistic is the
t-ratio of the coefficient on yi,t−1. The BCIPS statistic is then computed based on equation
(28). Critical values of the BCADF and BCIPS statistics can be simulated by repeating the
above procedures 10,000 times. The main focus of the paper is to develop panel unit-root
tests, and hence we consider the results from the individual BCADF test as secondary to
the corresponding results from the panel BCIPS test. We therefore do not report the critical
values of the BCADF statistic to save space, but they are available from the authors upon
request.

The 1%, 5% and 10% critical values of the BCIPS statistic for the model with an
intercept only and for the model with an intercept and a linear trend, under different �,
k , p, N and T , are reported in Tables S1–S8.11 If the critical values of the BCIPS* and
BCIPS statistics are different, then the value of the former statistic is slightly larger than
that of the latter. This indicates a slightly rightward shift of the null distribution of the
BCIPS* statistic relative to that of the BCIPS statistic. To save space, the critical values of
the BCIPS* statistic are not reported, but they are available from the authors upon request.

A data-driven method of selecting � and p

Empirically, we do not know the values of the Fourier frequency (�) and the lag order (p)
of the model, and hence they need to be determined first. We modify Enders and Lee’s
(2012a) grid-search method to determine � and p jointly. To be specific, this paper sets the
maximum Fourier frequency parameter, �max, and the maximum lag order of the model,
pmax, to 5 and 4 respectively and then estimates equation (38) for different lag orders,
p = 0, 1,…, 4, under a given �. We apply the SBC rule to determine the optimal lag order
p̂ and then construct SSR�,p̂ under a given N , T and �. The SBC under a given � is:

SBC = −TN

2
(1+ ln 2
)− T

2

N∑
i=1

ln

(∑T
t=1 ê2

it

T

)
, (39)

10
No additional regressor, xit , is included for the case with a single factor and the DGP of yit is: yit = yi, t−1 + ft +

"iyt .
11

The critical values of the BCIPS test for the model without an intercept and a linear trend are available from the
authors upon request.
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where êit is the residual estimate in equation (38). The optimal � is obtained by minimizing
the sum of squared residuals, SSR�,p̂, across different values of �: �̂ = arg min

�
SSR�,p̂.

Based on �̂ and p̂, the BCIPS statistic is calculated and the associated critical value is
applied. Applying the above method to determine �̂ and p̂, the sizes of the BCIPS test are
reasonable for T � 100 under a known two-factor model as discussed in section ‘Test with
� and p unknown’.

Uncertainty about the number of factors

Although it is reasonable to assume that the number of factors m is bounded by a sufficiently
large integer, mmax, it is unknown in practice. Following Pesaran et al. (2013), there are two
possible methods to proceed with the proposed test when m is unknown. The first one is to
set k = mmax − 1 if there exist k additional regressors to augment the BCADF regression.
In this case, the true number of factors is allowed to be any integer value between one and
mmax. The second one is to estimate m consistently by a suitable statistical technique such as
the information criteria proposed by Bai and Ng (2002) and Moon and Perron (2004). With
the estimated number of factors m̂, the number of additional variables for augmentation is
k = m̂ − 1.

IV. Finite sample performance

To examine the finite sample properties of the BCIPS test, this paper focuses on the case
with two factors.12 The data generating process is therefore given as follows:

yit =�iy(1−�iL)t + (1−�iL)�i,�,t +�iyi,t−1 +uit , i =1, 2,…, N , t =1, 2, .., T ,

where �i,�,t = �i +	iy,1 sin(2
�t/T )+	iy,2 cos(2
�t/T ); uit = �iy,1f1t +�iy,2f2t +�iy,t , �iy,t =
�iy�iy,t−1 + (1 − �2

iy)
1/ 2"iyt , yi0, "iy0 ∼ i.i.d.N (0, 1). Following Pesaran et al. (2013), we

set f1t , f2t ∼ i.i.d.N (0, 1), �iy,1 ∼ i.i.d.U [0, 2], �iy,2 ∼ i.i.d.U [0, 1], "iyt ∼ i.i.d.N (0,�2
i ) with

�2
i ∼ i.i.d.U [0.5, 1.5], and �iy ∼ i.i.d.U [0.2, 0.4] and i.i.d.U [−0.4, − 0.2] to denote the

cases of positive and negative residual serial correlation, respectively. We consider different
magnitudes for amplitude parameters: 	iy,1,	iy,2 ∼ i.i.d.U [1, 2], ∼ i.i.d.U [10, 100], and 	iy,1,
−	iy,2 ∼ i.i.d.U [1, 2], ∼ i.i.d.U [3, 5], ∼ i.i.d.U [10, 20]. These are examples of medium and
large amplitude values and of opposite sign in amplitude coefficients. One additional regres-
sor, xit , is generated by �xit = dix + 	ix,1� sin(2
�t/T ) + 	ix,2� cos(2
�t/T ) + �ix,1f1t +
�ix,2f2t + �ix,t , �ix,t = �ix�ix,t−1 + "ixt , where xi,0 ∼ i.i.d.N (0, 1), �ix,1 ∼ i.i.d.U [0, 2], �ix,2 =
0,13�ix ∼ i.i.d.U [0.2, 0.4], and "ixt ∼ i.i.d.N (0, 1 − �2

ix). The amplitude parameters are set
as: 	ix,1,	ix,2 ∼ i.i.d.U [1, 2], ∼ i.i.d.U [3, 5] and −	ix,1,	ix,2 ∼ i.i.d.U [1, 2], ∼ i.i.d.U [3, 5].
For the intercept case, �i ∼ i.i.d.N (1, 1), �iy = 0 and dix = 0. As for the linear trend case,
�i ∼ i.i.d.N (0, 0.02), dix = �i and �iy,�i,�i ∼ i.i.d.U [0, 0.02].

12
The sizes and powers of the BCIPS* statistic are the same as those of BCIPS for T � 50, and they are available

from the authors upon request.
13

The factor loadings are generated so that E(�i) =
[

1 1
2

1 0

]
satisfies the rank condition (16). The same assump-

tions for the first and second factor loadings can also be found in Pesaran et al. (2013).
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Sizes are computed under the null hypothesis of �i = 1 for all i. Powers are constructed
under the alternative hypothesis of �i ∼ i.i.d.U [0.85, 0.95]. The common factors (f1t , f2t)
were generated independently of "it , and the parameters �i,�i,�iy,	iy,1,	iy,2,	ix,1,	ix,2,
�iy,1, �iy,2, �ix,1,�ix,�iy, dix and �i were also drawn independently of "it . The tests were one-
sided with the nominal size set at 5% and were conducted for N = 20, 30, 50, 100, 200,
T = 50, 70, 100, 200 and � = 1, 2, 3. The size and power for each experiment were con-
structed using 2,000 replications. Critical values for different combinations of �, p, k , N
and T under the model with an intercept and the model with an intercept and a linear trend,
reported in Appendix S2 (Tables B1–B8), are adopted to examine the size and power of the
BCIPS statistic. To save space, only the finite sample properties of the BCIPS test based
on the former model are reported, and the results based on the latter model are reported in
Appendix S2.

Size and power when factors and idiosyncratic errors are serially uncorrelated

As a benchmark, we assume that the frequency parameter, �, is known in both the DGP
and the regression, but the lag order of the model, p, is known in the DGP but unknown
in the regression. It is determined by the SBC rule in equation (39) under different values
of �. The size of the test with an unknown � and p is examined in section ‘Test with � and
p unknown’. We consider three different magnitudes for the amplitude coefficients. They
are 	iy,j,	ix,j ∼ i.i.d.U [1, 2], j = 1, 2, (case A), 	iy,1, −	iy,2 ∼ i.i.d.U [10, 20], −	ix,1,	ix,2 ∼
i.i.d.U [3, 5] (case B), and 	iy,1,	iy,2 ∼ i.i.d.U [10, 100],	ix,1,	ix,2 ∼ i.i.d.U [3, 5] (case C).
Table 1 indicates that the sizes are generally close to 0.05 regardless of amplitude values.
The above results agree with Theorems 1 and 2, indicating that the limiting distribution
of the BCADF statistic does not depend on nuisance parameters. Similar results are also
obtained when the model with an intercept and a linear trend is adopted, as indicated by
Table B9 in Appendix S2.

The last three panels in Table 1 point out that the powers of the BCIPS test are generally
greater than 0.5 for T � 50 when using the different amplitude values in cases A, B and C.
Under a given N and �, the power of the BCIPS test increases with T significantly and is
close to 1.0 for most cases when T � 100. This implies that the BCIPS test is consistent.
The power also increases with � when T and N are given, which is consistent with the
results of Enders and Lee (2012a, Table 3).14 Similar results are observed when the model
with an intercept and a linear trend is applied except that the powers of the BCIPS test are
generally high when T � 100 (instead of T � 50) as indicated in Table B9 in Appendix
S2. The above results indicate that the BCIPS test does not depend on nuisance parameters.

We next discuss the size distortion of the CIPS test by Pesaran et al. (2013) when
smoothing breaks exist in the DGP. The lag order of the model is also selected based on
the SBC rule in equation (39). This paper provides several cases to indicate that amplitude

14
The intuition behind this result is that as this deterministic component moves away from the zero frequency,

the persistence effect will diminish. A time series with high frequencies will be less persistent, and the power of unit
root tests tends to increase. We appreciate a reviewer’s suggestion. We also examine the power of the BCIPS test with
multiple Fourier frequencies. The simulation results (available from the authors upon request) indicate that the power
decreases as the number of Fourier frequencies increases, especially when the model includes a linear trend. These
results reflect that an over-fitting phenomenon occurs when the number of Fourier terms increases (Enders and Lee,
2012a). As such, we recommend a single Fourier frequency unless T and N are large.
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values affect the size of the CIPS test under different values of the frequency parameter
(�). They are 	iy,1, −	iy,2, −	ix,1,	ix,2 ∼ i.i.d.U [1, 2] (case D) and ∼ i.i.d.U [3, 5] (case E),
and 	iy,j,	ix,j from case B for j = 1, 2.15 The results from Table 2 indicate that the CIPS
test is oversized at � = 1 even when amplitude values are medium (case D). By increasing
amplitude values, the CIPS test generally reveals serious oversize distortions at � = 1, mild
oversize distortions at � = 2 and serious under-size distortions when � > 2, as indicated
by the second and third panels of Table 2. In general, the oversize distortions of the CIPS
test decrease with � regardless of amplitude values. Based on the linear trend model, the
results from Table B10 in Appendix S2 reveal that the CIPS test suffers serious oversize
distortions with large amplitude values when � � 2. The above results indicate that it may
not be appropriate to apply the CIPS test in empirical applications when smoothing breaks
in deterministic terms exist in data.

Size and power when factors are serially uncorrelated but idiosyncratic errors are serially
correlated

In the case with first-order autoregressive errors, we consider the scenarios of positive and
negative serial correlations with amplitude parameters being drawn from cases A (Table 3),
B and C (Table 4), respectively. Tables 3 and 4 indicate that the sizes of the BCIPS test
are close to 0.05 and the powers of the test are generally reasonable when T > 50 for both
models regardless of N, � and the sign of residual serial correlation. As for the powers of
the BCIPS test, they are reasonably high in general when T � 100. Besides, the sizes of
the BCIPS test under a positive residual serial correlation are generally smaller than those
under a negative residual serial correlation, and the powers of the test increase with � and
T respectively. Similar results are obtained if the model with an intercept and a linear trend
is applied, as indicated by Tables B11 and B12 in Appendix S2. The above results again
support that the values of 	iy,j and 	ix,j, ∀j = 1, 2, in the Fourier function have little effect
on the sizes and powers of the BCIPS test.

Test with � and p unknown

This section examines the sizes of the BCIPS statistic when � and p are known in the
DGP but are unknown in the regression, and hence they are jointly determined based on
the method discussed in section ‘A data-driven method of selecting � and p’. We focus
our discussion on the case with break amplitudes being drawn from case A since break
amplitudes in the Fourier function have little effect on the finite sample properties of the test,
as discussed in sections ‘Size and power when factors and idiosyncratic errors are serially
uncorrelated’ and ‘Size and power when factors are serially uncorrelated but idiosyncratic
errors are serially correlated’. The sizes of the BCIPS test under different N , T and � are
reported in Table 5 for the model with an intercept and in Appendix S2 (Table B13) for the
model with an intercept and a linear trend. With serially uncorrelated residuals, the sizes
of the BCIPS test are generally reasonable and close to 0.05 for the former model with
T > 50 and for the latter one with T � 100. Although the sizes of the BCIPS test based on

15
The sizes and powers of the CIPS test are reasonable when the amplitude values are small such as 	iy, j , 	ix, j

∼ i.i.d.U [0, 0.2] for j = 1, 2. The results are available upon request from the authors.
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the model with an intercept and a linear trend are slightly higher than those from the model
with an intercept when residuals are serially correlated, they are reasonable and close to
0.05 for T � 100.

V. Empirical application

The conventional literature examines the validity of long-run PPP by testing the stationarity
of real exchange rates based on the model with an intercept only. Smoothing breaks are
likely to appear in real exchange rates due to common shocks or long-lived bubbles. It is
therefore interesting to apply the BCIPS test to re-examine long-run PPP since the test
accommodates cross-dependence and smooth breaks in real exchange rates.

Quarterly nominal exchange rates and consumer price indices (CPI) for 30 OECD
countries over the 1981Q1–2011Q4 period are downloaded from the IMF’s International
Financial Statistics (IFS).16 For euro-zone countries, the dollar-based nominal exchange
rates after 1999 were constructed by using the euro-dollar rate and the prefixed exchange
rates at 1 January 1999 (Alba and Papell, 2007).The real exchange rate of a country relative
to the US is defined as: qit = ln(Eit) − ln(Pit) + ln(Pus

it ), where E is the nominal exchange
rate (domestic currency per US dollar) and P and Pus are the consumer price indices of a
domestic country and the US respectively.

We set mmax = 4 since Eickmeier (2009) points out that two to six unobserved common
factors are sufficient to explain variations in most macroeconomic variables. This suggests
that at most three additional I (1) regressors are needed.Additional regressors that are likely
to share common factors with real exchange rates include real gross domestic product (gdp),
the long-term government bond yield (rL), the price-dividend yield (pd) and the price of
Brent crude oil (poil).The quarterly data of these four variables are downloaded from Global
Financial Data and IFS. The cross-sectional averages of the above variables are defined
as follows: gdpt = 1

N

∑N
i=1 ln(GDPit/GDPDit), rL

t = 1
N

∑N
i=1 0.25 × ln(1 + RL

it/ 100) and
pdt = 1

N

∑N
i=1 ln(PSit/Dit). The subscripts i and t denote the ith country and the tth period;

GDP is the gross domestic product in the domestic currency, and it is seasonally adjusted by
X11 if the raw GDP data are not seasonally adjusted; GDPD is the gross domestic product
deflator; RL is the 10-year, long-term government bond yield; and PS and D denote stock
prices and dividends, respectively. For the model with an intercept, the additional regressors
should also be non-trended. We regress the above four variables with a linear trend, and
the non-trended components are computed as the residuals from the above regressions.17

These four additional variables are not all available for all countries in the panel over the

16
They are Australia (AUT), Austria (AUS), Belgium (BEL), Canada (CAN), the Czech Republic (CZE), Denmark

(DEN), Finland (FIN), France (FRA), Germany (GER), Greece (GRE), Hungary (HUN), Iceland (ICE), Ireland (IRE),
Italy (ITA), Japan (JAP), Korea (KOR), Luxembourg (LUX), Mexico (MEX), the Netherlands (NET), New Zealand
(NEZ), Norway (NOR), Poland (POL), Portugal (POR), Slovakia (SLO), Spain (SPA), Sweden (SWE), Switzerland
(SWI), Turkey (TUR), the United Kingdom (UK) and the United States (US).

17
A downward linear trend is clear in the plots of long-term government bond yields but is less clear in the plots

of price-dividend yields, which look likely to exhibit a quadratic trend or no trend. Alternatively, we assume that
price-dividend yields have no trend or exhibit a quadratic trend respectively and then re-examine long-run PPP. These
changes, however, do not qualitatively affect the results in Table 4. The results are available from the authors upon
request.
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TABLE 6

The BCIPS and CIPS panel unit-root tests for real exchange rates

�qit = ci, 0 + ci, 1 sin(2
�t/T )+ ci, 2 cos(2
t/T )+ c′i, 3z̄t +
∑p

j=1 c′i, 5, j�Z̄t−j

+∑p
j=1 ci6, j�qi, t−1 +biqi, t−1 + eit , where zit = (qit ,x′

it)
′.

Included xit (p̂, �̂) [N , T ] CD BCIPS CIPS

p̂ is determined by the SBC rule in equation (39), m = 1
No (1,1) [29,124] 116.7* −3.390** −2.108
m=2
gdp (1,1) [19,124] 83.8* −3.757** −2.867**
poil (1,1) [29,124] 116.7* −3.228* −2.116
rL (1,1) [20,124] 98.5* −3.331* −2.658**
pd (1,1) [16,124] 74.3* −3.245 −2.752**
m=3
gdp, poil (1,1) [19,124] 83.8* −3.510* −2.993**
poil , rL (1,1) [20,124] 98.5* −3.048 −2.709*
rL, gdp (1,1) [17,124] 82.0* −3.701** −2.936**
pd, gdp (1,1) [15,124] 68.6* −3.770** −3.418**
pd, poil (1,1) [16,124] 74.3* −3.015 −2.749*
pd, rL (1,1) [15,124] 68.6* −3.206 −2.781*
m=4
gdp, poil , rL (1,1) [17,124] 82.0* −3.458 −2.918*
pd, poil , rL (1,1) [15,124] 68.6* −2.974 −2.713
gdp, pd, rL (1,1) [15,124] 68.6* −3.495 −3.309**
gdp, poil , pd (1,1) [15,124] 68.6* −3.775** −3.367**

Notes: m is the number of factors in the model. CD is the cross-sectional de-
pendence test of Pesaran (2004). ‘**’ indicates significance at the 1% level and
‘*’ indicates significance at the 5% level . �̂ and p̂ are jointly determined based on
the rule of minimum sum of square described in section ‘A data-driven method of
selecting � and p’.

period of 1981–2011. There are 19 series for gdp, 20 series for r L, 16 series for pd and 29
series for qit .

The CIPS and BCIPS statistics are applied to examine the joint unit-root hypothesis if
the cross-sectional dependence test provided by Pesaran (2004) rejects the hypothesis of
no cross dependence. The common lag order in the CIPS test is determined based on the
SBC rule in equation (39). The common lag order and frequency parameter in the BCIPS
test are jointly determined as discussed in section ‘A data-driven method of selecting �
and p’.

We start from the single-factor case which includes no additional regressors in the
CADF and BCADF regressions. One, two and three additional regressors are respectively
included in the CADF and BCADF regressions for the two, three and four factors cases.The
sets of additional regressors for the two-, three- and four-factor cases are {gdp, poil , pd, rL},
{(gdp, poil), (poil , rL), (gdp, rL), (pd, gdp), (pd, poil), (pd, rL)} and {(gdp, rL, poil), (pd, rL, poil),
(gdp, pd, rL), (gdp, poil , pd)} respectively.

Table 6 indicates that the CIPS and BCIPS tests reject the joint unit-root hypothesis at the
5% level for 12 out of 15 and 8 out of 15 cases respectively and there are six cases in which
the CIPS instead of the BCIPS test rejects the unit-root hypothesis. Moreover, for those six
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cases, the estimated � is 1. The above results are consistent with the simulation results in
Table 2, which indicate that the CIPS test may have serious oversize distortions for � = 1
and T close to 100 when smooth Fourier breaks exist. Besides, the evidence of rejecting
the unit-root hypothesis based on the BCIPS test declines with the number of factors.

Next, we apply the information criteria, ICp1, ICp2, and ICp3, proposed by Bai and Ng
(2002) to estimate the number of unknown factors, m, in the panel of real exchange rates.
The maximum number of factors is set to 4. We first remove smooth breaks in the deter-
ministic term from the data.18 LetM�D = I − �̈(�̈

′
�̈)−1�̈

′
, where �̈ = (��1,��2), ��1 =

(� sin(2
�1/T ),…, � sin(2
�T/T ))′, and��2 = (� cos(2
�1/T ),…, � cos(2
�T/T ))′.Fol-
lowing Bai and Ng (2004), we transform �qi to obtain �q̈i with different values of �:
�q̈i = M�D�qi, where �qi = (�qi1,…, �qiT )′. Then we apply the IC criteria to �q̈i for
i = 1,…, N . Based on the above three IC criteria, the estimated number of factors is four
regardless of the values of �. Given that the estimated number of factors is four, the BCIPS
test with three additional regressors reveals little evidence to reject the unit-root hypoth-
esis. Similar results are observed if the automatic lag-length selection rule employed by
Bai and Ng (2004) is applied: p̂ = int[4(min{N , T }/ 100)0.25], as indicated by Table B14 in
Appendix S2. We, therefore, conclude that there is little evidence to support long-run PPP.

VI. Conclusion

This paper develops a simple panel unit-root test, BCIPS, that accommodates cross-
sectional dependence among variables and smooth structural changes in deterministic
components. The data generation process is generalized to allow for multiple factors. It
first shows that the asymptotic null distribution of the individual BCADF statistic does
not depend on nuisance parameters when N approaches infinity under a fixed T or when
both T and N go to infinity. The limiting distribution of the (truncated) BCIPS statistic is
shown to exist and its critical values are tabulated. Finite-sample properties of the BCIPS
test are then investigated by Monte-Carlo simulations. The simulation results support that
the limiting distribution of our proposed statistic does not depend on nuisance parameters,
that the sizes (powers) of the statistic are generally good as long as T � 50 (T � 100), and
that the powers of the test increase with �. The above results indicate that the application of
the BCIPS test is suggested for T � 100 when smoothing breaks exist in the data. It is fair
to say that the BCIPS test complements the panel unit-root tests using dummy variables.
Finally, the BCIPS test is applied to examine long-run PPP, and the results reveal little
evidence to support it.

Final Manuscript Received: June 2015
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