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1. Introduction 

This paper applies independent component analysis (ICA) to construct fundamental 

exchange rates from a panel of nominal exchange rates and then examines the superiority 

of independent component-based (IC-based) models in the out-of-sample prediction of 

nominal exchange rates. The IC-based fundamental exchange rate picks up information 

regarding the third moment of exchange rate changes, but such information is neglected 

by the principal component-based (PC-based) rates. Hence, the IC-based rate is less 

prone to measurement errors, which helps the IC-based model to predict exchange rates. 

Using the panel data of the U.S. plus seventeen other OECD countries over 1973-2011, 

we obtain three interesting results. First, the IC-based model rather than the PC-based 

model is superior to the driftless random walk in out-of-sample contests, supporting that 

the information on nonstandard fundamentals is crucial for exchange rate prediction, but 

extracting such information from observable fundamentals is difficult (Engel and West, 

2005; Engel et al., 2012). Second, the Taylor rule (TR) and purchasing power parity (PPP) 

fundamental augmented IC-based models reveal even stronger evidence to beat the 

random walk at medium and long horizons, indicating the importance of standard and 

nonstandard fundamentals in predicting exchange rates. Finally, the above-mentioned 

results are robust to several scenarios under investigation, and the superiority of the IC 

method in out-of-sample prediction is more likely to be observed if the US sources and 

the recursive scheme are applied. Our empirical results shed light on solving the 

exchange-rate disconnect puzzle (Obstfeld and Rogoff, 2000). 

The exchange-rate disconnect puzzle, indicating the failure of structural exchange 

rate models in the out-of-sample prediction of exchange rates, has been a well known 

puzzle in empirical international finance since the seminal paper by Meese and Rogoff 

(1983). Although many articles have found evidence of defeating the random walk in 

out-of-sample contests (Mark, 1995; Chinn and Meese, 1995, Killian and Taylor, 2003; 
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Molodtsova and Papell, 2009), these evidences are either too weak or not robust enough 

to forecast horizons and sample periods (Cheung et al., 2005).1 

Two likely reasons for the failure of structural models in out-of-sample contests are 

examined in the literature. The first one is imprecise parameter estimates (Engel et al., 

2007; Rapach and Wohar, 2004; Mark and Sul, 2001, 2011; Groen, 2005). Mark and Sul 

(2001) have shown that predictive accuracy can be significantly improved by pooling 

across currencies. The second one is the imperfect approximation of the true fundamental 

exchange rates (Engel et al., 2012; Engel and West, 2005; Groen, 2006). Stock and 

Watson (2002a, 2002b) find that common components from a large panel of economic 

data are good measures of fundamental drivers of economies. Groen (2006) estimates 

factor-based fundamental exchange rates based on a large panel of economic data but 

finds mixed results on the superiority of the factor-based model in out-of-sample 

contests. 

Engel and West (2005) point out that exchange rates are the best proxy for 

measuring latent fundamental exchange rates. Engel et al. (2012) assume that exchange 

rates are a linear mixture of unknown factors and then estimate common factors from 

cross-sectional exchange rates by applying a classical factor analysis and the principal 

component analysis (PCA) proposed by Bai (2004). By treating the estimated common 

components as the factor-based fundamental exchange rates, they apply a panel 

error-correction model to examine the performance of the factor-based model in 

out-of-sample prediction. Although maximum likelihood estimators are consistent and 

are more efficient than those of PC-based estimators (Bai and Li, 2012), Engel et al. 

(2012) find that both estimators reveal only a weak improvement in the out-of-sample 

prediction of nominal exchange rates. 

This paper applies the noisy ICA to model nominal exchange rates and hence 

                                                 
1 Engel (2013) provides an interesting survey on the determination of nominal exchange rates since 1995. 
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assumes that they are a mixture of latent independent sources (factors) plus an additive 

Gaussian noise. Components such as noise trading, risk premiums, news on fundamentals, 

and exchange rate shocks are expected to have widespread effects on exchange rate 

changes (Balke et al., 2013). It seems reasonable to assume that these components are 

independent of each other. Moreover, the non-normality of exchange rate changes has 

received substantial support in the literature (Boothe and Glassman, 1987, Domowitz and 

Hakkio, 1985, Engel and Hamilton, 1990). The non-Gaussian nominal exchange rate 

changes imply that latent sources are non-Gaussian. 2  To estimate non-Gaussian 

independent sources, information on higher-order moments is needed. However, PCA 

constructs orthogonal factors using information only up to the second moment. Hence, a 

likely reason for Engel et al. (2012) to obtain weak improvement in out-of-sample 

contests could be that their factor-based fundamental exchange rates are not a good 

measure of the latent fundamental rates. 

The IC method can be formulated as the optimization of an objective function 

which minimizes the cross dependence among the components. The method is based on 

maximizing non-Gaussianity via a measure of the distance to normality, such as skewness, 

excess kurtosis, negentropy and others. After estimating the mixing coefficients (factor 

loadings) and independent sources from observed exchange rate changes, we construct 

the IC-based fundamental exchange rates by multiplying the estimated independent 

sources with mixing coefficients. Furthermore, we examine the superiority of the 

IC-based model and its fundamental augmented models in out-of-sample contests. To 

benefit from the gains in forecast accuracy, we impose the homogeneity restriction in the 

panel estimation of a predictive equation (Mark and Sul, 2001). 

The remainder of the paper proceeds as follows. We present the empirical model, 

                                                 
2 One can only estimate the independent component model of Gaussian data up to an orthogonal 
transformation, and the mixing matrix is not identifiable if there are more than two Gaussian independent 
components ( Hyvarinen et al., 2001). 



 4

construct the sources-based fundamental exchange rates, and describe the strategy of 

out-of-sample prediction in section 2. In section 3, we describe the data, discuss the 

estimates of mixing coefficients and independent sources, and elucidate out-of-sample 

prediction results. Section 4 examines the robustness of our results. Section 5 proposes a 

simulation analysis to explain why IC-based models are better than PC-based models in 

out-of-sample prediction. Finally, section 6 concludes. The appendix describes the 

construction of the IC-based fundamental exchange rates. 

2. The Empirical Model and its Estimation 

We treat log nominal exchange rates as observed signal mixtures which are a linear 

combination of latent independent sources with unknown mixing coefficients: 

, , , , , ,1

K

i t i i j j t i t i i t i tj
e c f u c E u


      , i=1,…,N, t=1,…,T.            (1) 

where ,i te  indicates the log nominal exchange rate; ,j tf  is the jth source at time t and 

,i j  is the ith country’s mixing coefficient on the jth source; ,i tE  denotes the latent 

fundamental exchange rate of country i at time t, which is constructed by multiplying K 

independent sources with mixing coefficients; ,i tu  is an identically, independently and 

normally distributed noise, i.e., 2
, i.i.d. (0, ).

ii t uu N   Furthermore, we assume that the 

,j tf s are I(1) variables; hence, equation (1) implies that ,i te  and the ,j tf s are 

cointegrated. Our purpose is to estimate the latent non-Gaussian independent sources and 

mixing coefficients by using observed data, ,i te , i=1,…, N, t=1,…,T. 

Assuming cointegration between ,i te  and the , sj tf , Engel et al. (2012) extract the 

, sj tf  from a panel of nominal exchange rates using PCA (Bai, 2004). Although PCA is 

quite successful with multivariate Gaussian data, PCs could be far away from real ones 

when data are non-Gaussian (Sarela   and Valpola, 2005). This paper applies ICA to 

estimate non-Gaussian independent sources and adopts skewness to measure the distance 
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to normality. Hence, ICA picks up information regarding the third moment of exchange 

rate changes, which is ignored by PCA. The reason for measuring non-Gaussianity with 

skewness is that in our data, exchange rate changes reveal stronger evidence of skewness 

than kurtosis, a finding consistent with Brunnermeier et al. (2009) and Brunnermeier and 

Pedersen (2009). Next, using kurtosis as an objective function is notorious for being 

prone to overfitting and producing very spiky sources estimates (Sarela   and Vigario, 

2003; Hyvarinen  et al., 2001). The de-noising source separation (DSS, 2005) algorithm 

provided by Sarela   and Valpola (2005) is applied in estimation.3 The stationarity of 

data is required for ICA. Hence, we adopt the two-step method of Bai and Ng (2004) to 

extract level sources ( ,
ˆ

j tf s). Their method extracts stationary sources (  ,j tf s) from 

exchange rate changes in the first step and then cumulates them over time to obtain level 

sources ( 
, ,2

ˆ =  )
t

j t j ts
f f


  in the second step. 

Stock and Watson (2002a, 2002b) point out that the scale effect may contaminate 

the estimation of factors. We therefore construct the normalized nominal exchange rate 

( ,
n
i te ) and then calculate its changes.4 After estimating mixing coefficients and level 

sources, we construct the IC-based fundamental exchange rate ( ,
ˆ I

i tE ) accordingly (see the 

appendix for details). The deviation of the exchange rate from its IC-based fundamental 

rate is measured by , ,
ˆ I n

i t i tE e .5  

To construct PC- and IC-based fundamental exchange rates, we need to specify the 

number of sources. The number of principal components is estimated by the information 

                                                 
3The DSS algorithm can be justified as an expectation-maximization (EM) algorithm that proceeds by 
alternating between the E-step and the M-step. In the E-step, the posterior distribution of sources is 
computed based on the known data and the current estimates of mixing vectors using Bayes’ theorem. In 
the M-step, the posterior distribution of the sources is used to compute new maximum likelihood estimates 
of mixing vectors and sources. The detailed discussion of the algorithm is given in Sarela   and Valpola 
(2005) and the code of the DSS (2005) is available from Professor Valpola’s webpage. 
4 , , , ,[ ] /n

i t i t e i e ie e    , where ,e i  and ,e i  are the mean and standard deviation of ,i te . 

5 We apply normalized exchange rates to estimate ,
ˆ I

i tE ; hence, it matches with ,
n
i te  instead of ,i te . 
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criterion of 2pIC  provided by Bai and Ng (2002), and the estimated number of sources 

is three.6 The finding of three estimated sources is consistent with Bai and Ng (2007) 

who point out three primitive shocks in 132 monthly US variables. It also agrees with 

Eickmeier (2009) pointing out that two to six latent common factors are sufficient to 

explain variations in most macroeconomic variables, and it agrees with 

Greenaway-McGrevy et al. (2014) indicating three factors in 27 monthly exchange rates. 

Since no article discusses the criterion of selecting the number of independent sources, to 

the best of our knowledge, we assume that it is the same as the number of principal 

components determined by 2pIC .7 

The assumptions that nominal exchange rates cointegrate with latent fundamental 

rates and that exchange rates are not weakly exogenous imply that the deviations of the 

exchange rate from its latent fundamental rate are helpful to predict future exchange rate 

changes. Several articles have pointed out that the fundamental exchange rates implied by 

a flexible price monetary (M) model (Mark, 1995; Groen, 2000, 2005; Mark and Sul, 

2001), a Taylor rule (TR) model (Molodtsova and Papell, 2009) and the PPP model 

(Kilian and Taylor, 2003; Engel et al., 2007) are helpful to forecast exchange rates. The 

long-horizon predictive equation for a fundamental augmented source-based model is: 

, , , , , , , , , , , ,
ˆ( ) ( ) ,d d n d d

i t i t h k h i t h i t h k h i k t h i t h i k h te e E e z e                          (2) 

, , , , , , , , ,  d d d
i k h t i k h i k h tc u    k=TR, M, PPP; h=1, 4, 8, 12; i=1,…,N; d=I, P, 

where h is the forecast horizon and is set to one, four, eight and twelve quarters, , ,i k tz  is 

the kth model-based fundamental exchange rate for country i, and the regression error 

                                                 
6 The estimated source number is also three if 1pIC  or 3pIC  is applied. The accuracy of pIC  is good, 

relative to other criterions, even though the cross-sectional size is small (Bai and Ng, 2002). 
7 For noisy ICA models, the algorithm using only second-order moments of the data in the pre-whitening 
step is able to consistently estimate the mixing matrix if the number of common sources is less than the 

Ledermann bound: LB=(2N+1- 8N 1 )/2 (Bonhomme and Robin, 2009). Our empirical analysis in section 
3 is based on the number of sources up to three that is less than the Ledermann bound which is 11.65 for 
the period before the launch of the euro and 5.23 for the period after the Bretton Woods system ended. 
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, , ,
d
i k h t  includes an individual specific effect, , ,

d
i k hc .  

Equation (2) degenerates to a source-based model if , 0d
k h  , to a 

fundamental-based model if , 0d
k h  , to the random walk with drift if , , 0d d

k h k h   , 

and to the driftless random walk if , , , , 0.d d d
i k h k h k hc      Engel et al. (2007) and Mark 

and Sul (2001) include a time-specific effect in (2) and use the recursively-estimated time 

average as a projection of the future time effect. We simply set the future time effect to 

zero since the average time effect in exchange rate changes is zero. Equation (2) should 

reveal impressive evidence in out-of-sample contests if the IC-based fundamental 

exchange rate is a good measure of the latent fundamental rate. In addition, if ,
ˆ I

i tE  is 

better than ,
ˆ P

i tE  in measuring the ith country’s latent fundamental exchange rate, 

equation (2) should produce stronger evidence of defeating the random walk than when 

, ,
ˆ I n

i t i tE e  in equation (2) is replaced with , ,
ˆ P n

i t i tE e . The information on nonstandard 

fundamentals is helpful for predicting exchange rates if the model based on equation (2) 

with , 0d
k h   defeats the random walk in out-of-sample contests. The information on 

standard and nonstandard fundamentals is helpful for exchange rate prediction if a 

fundamental augmented source-based model reveals stronger evidence of defeating the 

random walk than the source-based model itself. 

Following Engel et al. (2012), the TR-based fundamental exchange rate is: 

, , , *, , *, ,1.5( ) 0.5( )gap gap
i TR t i t t i t t i tz y y e      , 

where ,
gap
i ty  and ,i t  are the output gap and inflation rate of country i, respectively, and 

the subscript “*” denotes the United States. The M-based fundamental exchange rate is: 

, , , *, , *,( ) ( )i M t i t t i t tz m m y y    ,  

where ,i tm  and ,i ty  are the log money supply and log output of country i, respectively. 
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Finally, the PPP-based fundamental exchange rate is:  

, , , *,i PPP t i t tz p p  , 

where ,i tp  is the log price level of country i. 

Out-of-sample Prediction 

After estimating equation (2) with the least squares dummy variable (Mark and Sul, 

2001), the forecasts of nominal exchange rate changes are constructed as follows: 

, , , , , , , , , , , 0 0
ˆ ˆ ˆˆ ˆ ( ) ( ),  , 1,..., ,d d d n d

i t h i t i k h k h i t i t k h i k t i te e c E e z e t T T T h              (3) 

where 0T  is the last period of time in the in-sample period. The recursive scheme with 

the initial estimation window being fourteen years is applied in out-of-sample contests 

(Engel et al., 2012).8 The number of out-of-sample forecasts decreases with the forecast 

horizon, h. The source number in each recursive sample is determined by 2pIC . After 

conducting out-of-sample forecasts, we add the recent observations to the in-sample data 

and then re-estimate the output gaps, the number of sources, mixing coefficients and 

latent sources; re-calculate source-based fundamental exchange rates; and re-construct 

forecasts. In other words, the output gap, the number of sources, and the source-based 

fundamental exchange rate are constructed based on in-sample data and they are 

re-constructed when the in-sample data are expanded. No future information is used in 

conducting out-of-sample forecasts. Hence the forecasts from equation (3) and the 

random walk are both ex-ante forecasts. 

The benchmark model is the driftless random walk since it is more difficult to be 

defeated than the random walk with drift in out-of-sample contests (Mark, 1995, Engel et 

                                                 
8 Exchange rates reveal a significant common break at 1985 in the Early sample and two significant 
common breaks at 1985 and 2002 in the Long sample. If data are characterized by structural changes, the 
rolling scheme has the advantage of using only those data relevant to the present data generating process in 
estimation. However, if the amount of data is not large, reducing the sample in estimation to reduce 
heterogeneity increases the variance of the parameter estimates, causing the mean square forecast error to 
increase (Clark and McCracken, 2004). This could be the reason why it is more common to construct 
forecasts with a recursive scheme in the macroeconomic literature (Mark, 1995; Kilian and Taylor, 2003; 
Engle et al., 2007, 2012; Stock and Watson, 2003). 
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al., 2012). The superiority of a model relative to the benchmark model is evaluated based 

on the Theil-U (TU) statistic and the CW-statistic of Clark and West (2006, 2007).9 We 

conclude that the model is superior to the driftless random walk if the TU-statistic is less 

than one or the CW-statistic is less than -1.282. 

3. Empirical Investigations 

3.1. Data Description 

Quarterly data for end-of-period nominal exchange rates (foreign currency per US 

dollar, code line ae), the seasonally-adjusted industrial production index (IPI, code line 

66), money supply10 and the consumer price index (CPI, code line 64) over the period 

from 1973Q1 to 2011Q2 are obtained from the IMF’s IFS CD-ROM. Money supply and 

CPI are seasonally adjusted by taking a four-quarter average of the log levels. The 

inflation rate, t , is constructed from log CPI: 1t t tp p   . The output gap is the 

deviation of log output from potential log output measured by the Hodrick-Prescott (HP) 

filter. The U.S. plus seventeen other OECD countries are considered. The seventeen other 

countries are Australia (AUT), Austria (AUS), Belgium (BEL), Canada (CAN), Denmark 

(DEN), Finland (FIN), France (FRN), Germany (GER), Japan (JAP), Italy (ITA), Korea 

(KOR), the Netherlands (NET), Norway (NOR), Spain (SPN), Sweden (SWD), 

Switzerland (SWZ), and the United Kingdom (UK). The United States is treated as the 

base country. Due to the launch of the Euro in January 1999, Euro-zone countries do not 

have a nominal exchange rate for their local currency after December 1998. We therefore 

consider two sample periods: the period after the Bretton Woods system ended (1973Q1- 

                                                 
9 Though no article has formally discussed whether the CW test works satisfactorily in a panel setting, we 
do believe that the CW test should work fine if the number of observations is much larger than the number 
of countries in the panel. We thank Professor Kenneth West’s comment. 
10 The data on money supply deserve some description. Due to the lack of consistent data among countries, 
different definitions of money are used. Money supply is basically defined as M1 if it is available. 
Otherwise, for a given country, the definition of money that has the longest run of available data will be 
used. There are eight countries with M1, two with M2, one with M3, five with currency in circulation, one 
with quasi money, and one with money plus quasi money. The sample period for the monetary-based and 
Taylor-rule-based fundamentals end at 2009Q2 and 2011Q1, respectively, due to data availability. 
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2011Q2, Long) and the period before the appearance of the Euro (1973Q1-1998Q4, 

Early).11  Data are available in the Early sample for all seventeen countries, but are 

available for only nine countries in the long sample. 

3.2. The estimates of mixing coefficients and latent sources 

Before estimating the mixing matrix and latent sources, we examine the normality of 

nominal exchange rate changes. Table 1 reports summary statistics of exchange rate 

changes for the Early and Long samples. The skewness is significantly different from 

zero, at the 5% level, for six out of nine (six out of seventeen) countries in the Long 

(Early) sample. The kurtosis is significantly greater than three for six out of nine (three 

out of seventeen) countries in the Long (Early) sample. The Jarque-Bera normality test 

rejects the normality hypothesis for six out of nine (five out of seventeen) countries in the 

Long (Early) sample. These results indicate that nominal exchange rate changes do not 

appear to be jointly and normally distributed, and hence the information regarding the 

higher-order moments of exchange rate changes are helpful for estimating the mixing 

matrix and non-Gaussian independent sources. 

In Figure 1, we plot the first, second and third independent and principal 

components constructed from both samples, and they appear to follow a unit-root process. 

Except for the second independent component in the Early sample, ICs are more volatile 

than PCs, especially in the Long sample. The mixing coefficients of ICs and PCs ( ,
ˆ I
i j , 

,
ˆP
i j , i=1,…,N, j=1, 2, 3) for both periods are reported in Table 2, of which we will make 

a few observations. First, mixing coefficients measure a currency’s sensitivity to sources, 

and these estimates are generally less than 0.4 regardless of the sample periods. In 

particular, the mixing coefficient estimates of the third source are generally small relative 

to those of the first and second sources. Second, the estimated mixing coefficients of the 

                                                 
11 The forecast results for the period beginning in 1999 (Late) are examined in the robustness section. 
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first source, the ,1
ˆ I
i s, are larger than those of the second source, the ,2

ˆ I
i s, for sixteen out 

of seventeen countries in the Early sample and for six out of nine countries in the Long 

sample. Similar results are also observed for the estimated mixing coefficients of PCs. 

This implies that the first source reflects the major tendency regardless of the sample 

periods. Third, PCs and ICs are literally a weighted average of the log exchange rates of 

other countries since none of the mixing coefficient estimates are zero (Stock and Watson, 

2006; Engel et al. 2012). Furthermore, the mixing coefficient estimates differ across 

countries, indicating that currencies are not treated equally in estimating latent sources. 

Fourth, the absolute values of the mixing coefficient estimates from ICA are generally 

smaller than those from PCA ( ,
ˆ I
i j < ,

ˆP
i j ) regardless of the sources and samples. 

If the estimated sources and mixing coefficients from ICA are closer to the true ones 

than those from PCA, the IC-based fundamental exchange rate should be a better measure 

of the true latent fundamental rate than the PC-based rate. The exchange rate will move in 

a reverse direction and toward its IC-based rate when both rates deviate.12 This implies 

that , ,
ˆ I n

i t i tE e  contains more helpful information than , ,
ˆ P n

i t i tE e  in predicting exchange 

rates, which will be examined in the next section. 

3.3. Out-of-Sample Contests 

We first examine the out-of-sample predictability of the IC- and PC-based models 

over the Early and Long samples, respectively, and the number of sources is determined 

by ICp2. Table 3 reports the medians (across N) of the TU-statistic for different forecast 
                                                 
12 We assume cointegration between sources and exchange rates; hence, , ,

ˆ I n
i t i tE e  in (2) is stationary. The 

superiority of the IC method in out-of-sample contests could be spurious if , ,
ˆ I n

i t i tE e  is highly persistent 

(Rossi, 2005). We apply Pesaran’s (2007) CIPS statistic to test the unit-root hypothesis of , ,
ˆ I n

i t i tE e  where 

,
ˆ I

i tE  is constructed with the number of sources being determined by ICp2. The model with an intercept is 

applied and the lag order of the model is set to 4. The CIPS statistic rejects the unit-root hypothesis of 

, ,
ˆ I n

i t i tE e  for the Early sample, but fails to reject the hypothesis for the Long sample. The reason could be 

due to the small panel size for the Long sample (N=9) that reduces the power of the test. Given the rejection 

of the unit-root hypothesis for the Early sample, we therefore assume that , ,
ˆ I n

i t i tE e  is stationary.  
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horizons (the first line in each row under columns 3 - 6), the number of countries having 

the TU-statistic less than 1.0 for different forecast horizons (the left number on the 

second line of each row under columns 3 - 6), the number of countries for which the 

CW-statistic rejects the hypothesis of equal forecast accuracy at the 10% level for 

different horizons (numbers in parentheses), the percentage of the TU-statistics that are 

less than 1.0 over all horizons (TU ), and the percentage of the CW-statistics rejecting the 

null of equal accuracy at the 10% level over all horizons ( 1CW ) and over medium and 

long horizons ( 2CW ). The TU-statistic is the ratio of the root mean square error from a 

model and the root mean square error from the driftless random walk. The model is 

superior to the driftless random walk if the TU-statistic is less than one. The CW-statistic 

examines if the two models have the same mean square prediction errors, and the 

hypothesis of equal accuracy is rejected if the CW-statistic is less than -1.282. The 

median of the TU-statistic appears in bold if it is less than 1.0. The numbers in the last 

three columns are boldfaced if they are greater than or equal to 0.5. We conclude that a 

model is helpful to improve the out-of-sample predictability of exchange rates if some of 

these percentages are boldfaced. 

The results from the bottom panel of Table 3 indicate that the out-of-sample 

predictability is limited for the PC-based model but is impressive for the IC-based model. 

The medians of the TU ratios under different horizons are smaller than 1.0 for the 

IC-based model if the forecast horizon is greater than one quarter. TU  and 2CW  are 

0.59 and 0.47 for the Early sample, and they are 0.61 and 0.44 for the Long sample. 

Similar results are obtained if the IC-based fundamental exchange rates are constructed 

with the number of sources being determined by the cumulative percentage of total 

variance (CPV) rule (Jackson, 1993) and the Bayesian information criterion (BIC3, Bai 
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and Ng, 2002). 13  The above results support that information regarding standard 

fundamentals is important in explaining exchange rate movements, but extracting such 

information from observable fundamentals is difficult (Engel and West, 2005; Engel et al., 

2012).  

Table 4 reports the out-of-sample predictability of fundamental-augmented models 

defined by equation (2). For the Early sample, a fundamental-augmented IC-based model 

is superior to the random walk and the fundamental-augmented PC-based model in 

out-of-sample forecasts. As for the Long sample, the TR- and PPP-augmented IC-based 

models and the PPP-augmented PC-based model reveal significant evidence to beat the 

random walk. The results from Table 4 indicate that information regarding both standard 

and nonstandard fundamentals is helpful for exchange rate prediction (Engel et al., 2012). 

The major difference between PCA and ICA is that the former uses information 

only up to the second moment of data, but the latter adopts information on higher-order 

moments when data are non-Gaussian. The skewness is adopted to measure 

non-Gaussianity in our paper. Thus, in addition to the information in PCA, the estimated 

sources from ICA pick up additional information regarding the third moment of exchange 

rate changes.14 Hence, the IC-based fundamental exchange rates are less prone to 

measurement errors than the PC-based rate, which helps the IC-based model to predict 

exchange rates.  

To further examine that the good performance of the IC method is mostly due to 

non-normality in data, we first exclude the five currencies rejecting normality form the 

Early panel: AUT, ITA, KOR, NOR and SWD. If the non-normality of exchange rate 

changes is crucial for the IC method, then removing the above five currencies should 

                                                 
13 The criterion of CPV is to determine the number of factors by calculating the sum of the first m 
eigenvalues to exceed 50% of the total variance. 
14 Data are pre-whitened before estimating the mixing matrix and independent sources in ICA. The 
pre-whiten step is similar to PCA and catches the information up to the second moment. 
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weaken the forecast accuracy of the IC-based model. The results from the top panel of 

Table 5 indicate that the evidence to beat the random walk is weak for the PC method and 

is also less impressive than the results revealed in Tables 3 and 4 for the IC method. PC 

and IC methods are more comparable if data are less non-Gaussian. Next, we include 

only the above five currencies in the Early panel and expect to find that the performance 

of the IC method is better for the five countries than for the other twelve. Indeed, the 

results from the bottom panel of Table 5 indicate that the evidence of beating the random 

walk is very impressive and is much stronger than the results revealed in the top panel. 

These results justify the importance of non-Gaussian data in ICA.15 

4. Robustness16 

The stability of our results reported in Tables 3 and 4 is examined by different 

scenarios. We first consider the Late (1999Q1-2010Q2) and P90 (1990Q1-2010Q2) 

periods and find that the superiority of the IC method is impressive for both periods. 

Second, changing the criterion of determining the source number from ICp2 to CPV and 

BIC3 does not significantly affect the superiority of the IC method. Third, note that the 

random walk, the IC-based model and its fundamentals augmented models are nested 

models. This paper therefore applies the Max t-statistic (adj.) of Hubrich and West (2010) 

to evaluate the forecast accuracy of a small set of nested models.17 The results indicate 

that the evidence of defeating the random walk is impressive for the Early sample even 

when the forecast horizon is one quarter. Similar results are observed for the Long 

sample. Fourth, we change the initial estimation window from fourteen years to both 

                                                 
15 We appreciate a reviewer’s comment on this point. 
16 Empirical results in this section are available from the authors upon request. 
17 The critical values of the Max t-statistic (adj.) are simulated based on 1,000 bootstraps for constructing 
the sample correlation matrix between the adjusted difference in MSPEs across models and the random 
walk and on 10,000 Monte-Carlo simulations for obtaining critical values of the test statistic. The data 
generating processes (DGP) include N random walk processes for log nominal exchange rates and 3N 
equations for deviations from macroeconomic fundamentals, assumed to follow an AR(p) process. The lag 
order of the AR(p) process is determined by the BIC rule with 4 being the maximum lag setting. The DGP 
includes 68 (17 4) equations for the Early sample and 36 (9 4) equations for the Long sample. The 
long-horizon predictive equation is estimated using the method provided by Mark and Sul (2001). 
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sixteen years and twelve years and find that the results in Tables 3 and 4 are not 

qualitatively affected by these changes. Fifth, we treat Korea as an outlier and remove it 

from the panel since its exchange rate change is the most abnormal one based on the 

normality test in Table 1. The superiority of the IC-method is not qualitatively affected, 

although the TU  statistics for the IC-based model and its TR augmented model are 

slightly less than 0.5. 

Sixth, we apply the two-step method to construct PCs and ICs and find that the main 

results of the paper are not significantly affected. Seventh, we apply kurtosis to measure 

non-Gaussianity and find that the results from Tables 3 and 4 are not significantly 

affected for the Long sample. As for the Early sample, the kurtosis measure results in 

weaker superiority of the IC method than the skewness measure. The reason could be that 

exchange rate changes reveal weaker kurtosis (3/17) than skewness (6/17) in the Early 

sample. Eighth, we change the benchmark model to the random walk with drift. Both the 

IC and PC methods beat the random walk, indicating that driftless random walk is more 

difficult to be defeated than the random walk with drift.  

Ninth, the sources extracted from the US-based exchange rates can be interpreted as 

the “US sources”. How important are the US sources in the out-of-sample prediction of 

nominal exchange rates? This paper first re-examines the out-of-sample contests by 

setting the UK as the base country. The results from the Early sample, but not the Long 

sample, are generally similar to those reported in Tables 3 and 4. Next, JAP is treated as 

the base country. Only the M-augmented IC-based model defeats the random walk at the 

Early sample. Additionally, the PPP-augmented (M-augmented) PC-based model beats 

the random walk for both (Long) samples. In short, the US sources are important for the 

superiority of the IC method in the out-of-sample prediction of exchange rates. Finally, 

we re-examine the out-of-sample contests by using the rolling scheme with the rolling 
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window being ten years as suggested by Clark and McCracken (2004). Only the 

TR-augmented IC-based model defeats the random walk at the eight-quarter horizon, for 

both samples, based on the 2CW  statistic. The above results are not significantly 

affected if we change the rolling window to fourteen years. The reason for the rolling 

scheme to have poor out-of-sample performance could be due to time-varying features in 

the data.18 

The above results indicate that the good performance of the IC method is robust to 

sample periods, the criterions of source determination, the tests of evaluating forecast 

accuracy, initial estimation windows, outliers, the methods of constructing PCs, the 

measures of non-Gaussianity, and benchmark models. Second, the superiority of the IC 

method in out-of-sample prediction is more likely to be observed if the US sources and 

the recursive scheme are applied.  

5. The Simulation Analysis 

We argue that if exchange rate changes are non-Gaussian and are a linear combination 

of latent independent sources, ICA gives better results than PCA. To justify the above 

argument, we provide a simulation analysis that utilizes the following data generating 

process (DGP): 

 * * * *
, , , , ,1

ˆKI I
i t i t i t ij j t i tj

e E f


      , i=1,…, N, t=1,…, T, j=1,…,K, K=1, 2, 3,  (4) 

     *
,i t ~i.i.d.N(0, 2

i ) , 2
i ~ i.i.d.U(0.9, 1.1), 

where the ˆ sij  are estimated mixing coefficients reported in Table 2; *
,
I

j tf  is the jth 

non-Gaussian independent source bootstrapped from the jth estimated source ( ,
ˆ I

j tf ) 

reported in Figure 1; *
,i t  is an idiosyncratic error that is identically, independently and 

                                                 
18 Our simulation results (available from the authors upon request) indicate that the superiority of the IC 
method to the PC method in out-of-sample forecasts is stronger under the recursive scheme when structural 
changes appear in the data. 
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normally distributed with a zero mean, and its variance is identically, independently and 

uniformly distributed between 0.9 and 1.1. The DGP in (4) indicates that nominal 

exchange rates have an independent component structure and that the ith nominal 

exchange rate cointegrates with its latent fundamental exchange rate. 

After generating *
,i te , we construct IC- and PC-based fundamental exchange rates and 

compare the out-of-sample predictive accuracy of IC- and PC-based models under the 

recursive scheme with the initial estimation window being fourteen years. The IC-based 

model is better than the PC-based model if the TU-statistic is less than one. Repeating the 

previous procedures 200 times, we report the average number of countries (across 200 

replications) having the TU-statistic below one at different forecast horizons. The 

simulation results, reported in Table 6, indicate that the average number of countries 

having 1TU   is above 12 (6.8) for all forecast horizons in the Early (Long) sample.19 

These results indicate that if nominal exchange rates are the mixture of non-Gaussian 

independent sources and the ith nominal exchange rate cointegrates with its latent 

fundamental rate, the IC-based model is better than the PC-based model in out-of-sample 

prediction. 

6. Conclusions 

   The major reason for Engel et al. (2012) to find weak evidence to defeat the random 

walk in out-of-sample contests could be their inappropriate measure of the latent 

fundamental exchange rate with the PC-based rate. We measure the latent fundamental 

rate with the IC-based rate since it adopts information regarding the third moment of 

exchange rate changes, but such information is neglected by the PC-based rate. Hence, 

the IC-based fundamental exchange rate is less prone to measurement errors, which helps 

the IC-based model to predict exchange rates. Using the data of the U.S. plus seventeen 

                                                 
19 Simulation results are not affected if *

,
I

j tf  is replaced by ,
ˆ I

j tf  in each replication, or if 2
i  i.i.d.U(0.5, 

1.5) in (4), or if a rolling scheme is applied.  
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other OECD countries over 1973-2011, we find that the IC-based model and its 

fundamental-augmented models are superior to the random walk, indicating that 

information regarding standard and nonstandard fundamentals is important in explaining 

exchange rate movements. Furthermore, our results are robust to several scenarios under 

investigation and are more likely to be observed if the US sources and the recursive 

scheme are applied. Our results support the predictability of nominal exchange rates and 

hence shed light on solving the exchange-rate disconnect puzzle. 

Evans (2012) examines exchange-rate dark matter and shows that it accounts for 87 

percent of the variance of real depreciation rates for G-7 countries at the five-year 

horizon. He suggests that exchange rates appearing disconnected from traditional 

fundamentals reflects the importance of dark matter. Therefore, interesting problems for 

future research are to address how are the deviations of nominal exchange rates away 

from IC-based fundamental rates related with dark matter and to determine the dominant 

factors in the deviations. 
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Appendix: Constructing IC-based Fundamental Exchange Rates 

This appendix describes the construction of source-based fundamental exchange rates 

under a specific in-sample period, [1, 0T ]. 

1. Centering. Let oZ  be the 0N T  data matrix of ,i te . After constructing the 

normalized exchange rates ( ,
n
i te ) and computing its changes, we let Z be the data matrix 

of ,
n
i te  (= , , 1

n n
i t i te e  ), i=1,…,N, t=1,…, 0 1T  . Let Y be the matrix that subtracts the 

mean vector of Z  from Z , Y = Z - E(Z) . 

2. Whitening. Transform the data matrix ( Y ) to a new data matrix (X) which is 

white, i.e.,  -1/2X Γ ΨY , in which Ψ  is the orthogonal matrix of the eigenvectors of 

E[ ]YY  and Γ  is the diagonal matrix of eigenvalues. Whitening transforms the original 

mixing matrix ( oA ) to a new one (A= o-1/2Γ ΨA ) that is orthogonal. Therefore, whitening 

reduces the number of parameters to be estimated. 

3. We assume that X follows a linear noisy independent component model: 

 X AF v , where F is a 0K T  ( )K N  matrix of latent stationary sources ( ,j tf s ), 

A  is a N K  mixing matrix, and v  consists of i.i.d. Gaussian noises. Apply the DSS 

algorithm to estimate the mixing matrix ( Â ) and stationary sources ( ,j tf s ) from the 

pre-whitened data matrix X. The distance to normality is measured by skewness. The 

detailed estimation procedure is described in Sarela   and Valpola (2005). The mixing 

matrix corresponding to Y is o 1ˆ ˆ( ) -1/2A Γ Ψ A . 

4. Order stationary sources ( ,j tf s ) based on the algorithm provided by Wu et al. 

(2006), which applies the mean squared errors criterion. This is done because the 

variance may not be the quantity of interest for strongly non-Gaussian processes. Given 

the selected number of sources, we cumulate stationary sources to obtain level sources 

( 
, ,2

ˆ t

j t jf f  
  ), and then construct the IC-based fundamental exchange rates ( ,

ˆ sI
i tE ) 

by multiplying the estimated level sources with the mixing coefficient estimates in oÂ . 
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Footnotes: 

1 Engel (2013) provides an interesting survey on the determination of nominal exchange 
rates since 1995. 

2 One can only estimate the independent component model of Gaussian data up to an 
orthogonal transformation, and the mixing matrix is not identifiable if there are more than 
two Gaussian independent components ( Hyvarinen et al., 2001). 

3 The DSS algorithm can be justified as an expectation-maximization (EM) algorithm 
that proceeds by alternating between the E-step and the M-step. In the E-step, the 
posterior distribution of sources is computed based on the known data and the current 
estimates of mixing vectors using Bayes’ theorem. In the M-step, the posterior 
distribution of the sources is used to compute new maximum likelihood estimates of 
mixing vectors and sources. The detailed discussion of the algorithm is given in Sarela   

and Valpola (2005) and the code of the DSS (2005) is available from Professor Valpola’s 
webpage. 

4 , , , ,[ ] /n
i t i t e i e ie e    , where ,e i  and ,e i  are the mean and standard deviation of 

,i te . 

5 We apply normalized exchange rates to estimate ,
ˆ I

i tE ; hence, it matches with ,
n
i te  instead 

of ,i te . 

6 The estimated source number is also three if 1pIC  or 3pIC  is applied. The accuracy 

of pIC  is good, relative to other criterions, even though the cross-sectional size is small 

(Bai and Ng, 2002). 

7 For noisy ICA models, the algorithm using only second-order moments of the data in 
the pre-whitening step is able to consistently estimate the mixing matrix if the number of 

common sources is less than the Ledermann bound: LB=(2N+1- 8N 1 )/2 (Bonhomme 
and Robin, 2009). Our empirical analysis in section 3 is based on the number of sources 
up to three that is less than the Ledermann bound which is 11.65 for the period before the 
launch of the euro and 5.23 for the period after the Bretton Woods system ended. 

8 Exchange rates reveal a significant common break at 1985 in the Early sample and two 
significant common breaks at 1985 and 2002 in the Long sample. If data are 
characterized by structural changes, the rolling scheme has the advantage of using only 
those data relevant to the present data generating process in estimation. However, if the 
amount of data is not large, reducing the sample in estimation to reduce heterogeneity 
increases the variance of the parameter estimates, causing the mean square forecast error 
to increase (Clark and McCracken, 2004). This could be the reason why it is more 
common to construct forecasts with a recursive scheme in the macroeconomic literature 
(Mark, 1995; Kilian and Taylor, 2003; Engle et al., 2007, 2012; Stock and Watson, 2003). 

9 Though no article has formally discussed whether the CW test works satisfactorily in a 
panel setting, we do believe that the CW test should work fine if the number of 
observations is much larger than the number of countries in the panel. We thank 
Professor Kenneth West’s comment. 

10 The data on money supply deserve some description. Due to the lack of consistent 
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data among countries, different definitions of money are used. Money supply is basically 
defined as M1 if it is available. Otherwise, for a given country, the definition of money 
that has the longest run of available data will be used. There are eight countries with M1, 
two with M2, one with M3, five with currency in circulation, one with quasi money, and 
one with money plus quasi money. The sample period for the monetary-based and 
Taylor-rule-based fundamentals end at 2009Q2 and 2011Q1, respectively, due to data 
availability. 

11The forecast results for the period beginning in 1999 (Late) are examined in the 
robustness section. 

12 We assume cointegration between sources and exchange rates; hence, , ,
ˆ I n

i t i tE e  in (2) 

is stationary. The superiority of the IC method in out-of-sample contests could be 

spurious if , ,
ˆ I n

i t i tE e  is highly persistent (Rossi, 2005). We apply Pesaran’s (2007) CIPS 

statistic to test the unit-root hypothesis of , ,
ˆ I n

i t i tE e  where ,
ˆ I

i tE  is constructed with the 

number of sources being determined by ICp2. The model with an intercept is applied and 
the lag order of the model is set to 4. The CIPS statistic rejects the unit-root hypothesis of 

, ,
ˆ I n

i t i tE e  for the Early sample, but fails to reject the hypothesis for the Long sample. The 

reason could be due to the small panel size for the Long sample (N=9) that reduces the 
power of the test. Given the rejection of the unit-root hypothesis for the Early sample, we 

therefore assume that , ,
ˆ I n

i t i tE e  is stationary. 

13 The criterion of CPV is to determine the number of factors by calculating the sum of 
the first m eigenvalues to exceed 50% of the total variance. 

14 Data are pre-whitened before estimating the mixing matrix and independent sources in 
ICA. The pre-whiten step is similar to PCA and catches the information up to the second 
moment. 

15 We appreciate a reviewer’s comment on this point. 

16 Empirical results in this section are available from the authors upon request. 

17 The critical values of the Max t-statistic (adj.) are simulated based on 1,000 bootstraps 
for constructing the sample correlation matrix between the adjusted difference in MSPEs 
across models and the random walk and on 10,000 Monte-Carlo simulations for obtaining 
critical values of the test statistic. The data generating processes (DGP) include N random 
walk processes for log nominal exchange rates and 3N equations for deviations from 
macroeconomic fundamentals, assumed to follow an AR(p) process. The lag order of the 
AR(p) process is determined by the BIC rule with 4 being the maximum lag setting. The 
DGP includes 68 (17 4) equations for the Early sample and 36 (9 4) equations for the 
Long sample. The long-horizon predictive equation is estimated using the method 
provided by Mark and Sul (2001). 

18 Our simulation results (available from the authors upon request) indicate that the 
superiority of the IC method to the PC method in out-of-sample forecasts is stronger 
under the recursive scheme when structural changes appear in the data 

19 Simulation results are not affected if *
,
I

j tf  is replaced by ,
ˆ I

j tf  in each replication, or if 
2
i  i.i.d.U(0.5, 1.5) in (4), or if a rolling scheme is applied. 
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Table 1. Summary statistics of log nominal exchange rate changes 
 

 Mean Median Max Min Std Skew Kurt JB 
 

The Long sample (153 observations) 
AUT 0.002 -0.003 0.185 -0.166 0.054 0.547* 4.205* 16.90* 
CAN 0.000 0.000 0.144 -0.084 0.031 0.128 6.038* 59.25* 
DEN -0.001 0.003 0.135 -0.147 0.058 0.050 2.627 0.95 
JAP -0.008 -0.002 0.150 -0.170 0.059 -0.409* 2.951 4.29 
KOR 0.006 0.000 0.617 -0.203 0.067 5.080* 48.791* 14025* 
NOR -0.001 -0.001 0.191 -0.168 0.054 0.475* 4.391* 18.1* 
SWD 0.002 -0.003 0.286 -0.147 0.059 0.843* 5.846* 69.75* 
SWZ -0.009 -0.002 0.169 -0.186 0.065 -0.205 2.992 1.07 
UK 0.003 0.001 0.211 -0.144 0.053 0.456* 4.477* 19.21* 

 
The Early sample (103 observations) 

AUT 0.008 0.000 0.160 -0.089 0.047 0.735* 3.742 11.63* 
AUS -0.005 -0.005 0.136 -0.140 0.061 0.097 2.603 0.84 
BEL -0.001 0.003 0.169 -0.140 0.063 0.248 2.804 1.22 
CAN 0.004 0.003 0.051 -0.056 0.021 -0.013 3.287 0.36 
DEN 0.000 0.006 0.135 -0.147 0.059 0.087 2.679 0.57 
FIN 0.003 0.003 0.149 -0.112 0.050 0.232 2.944 0.94 
FRN 0.002 0.000 0.145 -0.136 0.059 0.103 2.737 0.48 
GER -0.005 -0.002 0.139 -0.157 0.063 0.057 2.791 0.24 
JAP -0.008 0.001 0.150 -0.170 0.062 -0.356 2.826 2.31 
ITA 0.010 0.002 0.206 -0.126 0.058 0.596* 3.742 8.47* 
KOR 0.011 0.000 0.617 -0.203 0.073 5.647* 49.552* 9847* 
NET -0.004 0.000 0.135 -0.151 0.062 0.151 2.640 0.95 
NOR 0.002 0.006 0.191 -0.098 0.051 0.635* 4.054* 11.69* 
SPN 0.009 0.005 0.196 -0.112 0.056 0.471* 3.370 4.40 
SWD 0.006 -0.003 0.286 -0.096 0.057 1.281* 7.367* 110.02*
SWZ -0.008 -0.003 0.169 -0.186 0.069 -0.177 2.961 0.55 
UK 0.004 -0.001 0.165 -0.138 0.054 0.259 3.148 1.25 

Notes: AUT, AUS, BEL, CAN, DEN, FIN, FRN, GER, JAP, ITA, KOR, NET,NOR, SPN, SWD, SWZ and 
UK indicate Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Japan, Italy, Korea, 
Netherland, Norway, Spain, Sweden, Switzerland and the United Kingdom, respectively. ‘Std’ and ‘Kur’ 
indicate the standard deviation and Kurtosis, respectively. ‘JB’ is the Jarque-Bera normality test. The 
asterisk (*) indicates significance at the 5 percent level. Early and Long refer to the periods 1973-1998 and 
1973-2011, respectively. 
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Table 2. Mixing coefficient estimates 
 

The Early sample The Long Sample 
       PCA            ICA             PCA             ICA        
 

,1
ˆP
i  ,2

ˆP
i ,3

ˆP
i  ,1

ˆ I
i  ,2

ˆ I
i  ,3

ˆ I
i  ,1

ˆP
i  ,2

ˆP
i  ,3

ˆP
i  ,1

ˆ I
i  ,2

ˆ I
i  ,3

ˆ I
i  

AUT 0.292 -0.129 0.121 0.032 0.003 0.047 0.401 -0.051 -0.274 0.034 0.065 0.039
CAN 0.286 -0.096 -0.539 0.045 -0.022 -0.050 0.346 0.149 -0.711 0.109 -0.033 0.016
DEN 0.202 0.298 0.003 0.253 0.087 0.054 0.211 0.537 0.154 0.194 0.206 0.112
JAP -0.193 0.303 -0.217 0.095 0.035 0.000 -0.274 0.474 -0.047 0.072 -0.005 0.113
KOR 0.291 -0.068 -0.516 0.013 -0.004 -0.032 0.367 -0.205 0.066 0.015 0.002 0.023
NOR 0.300 0.114 0.141 0.234 0.077 0.180 0.376 0.267 0.002 0.191 0.184 0.091
SWD 0.316 0.025 0.063 0.127 0.136 0.060 0.411 0.023 0.148 0.117 0.110 0.059
SWZ -0.151 0.341 -0.005 0.161 0.102 0.031 -0.185 0.567 -0.098 0.143 0.093 0.061
UK 0.286 0.076 0.504 0.212 0.073 0.051 0.347 0.162 0.597 0.043 0.143 0.222

AUS -0.080 0.384 -0.100 0.225 0.080 0.050 --- --- --- --- --- --- 
BEL 0.130 0.360 0.093 0.246 0.096 0.058 --- --- --- --- --- --- 
FIN 0.280 0.131 -0.180 0.184 0.157 0.077 --- --- --- --- --- --- 
FRN 0.256 0.226 0.184 0.233 0.093 0.060 --- --- --- --- --- --- 
GER -0.067 0.388 -0.093 0.236 0.084 0.050 --- --- --- --- --- --- 
ITA 0.318 -0.020 0.001 0.125 0.073 0.025 --- --- --- --- --- --- 
NET -0.031 0.396 -0.095 0.249 0.089 0.041 --- --- --- --- --- --- 
SPN 0.320 0.016 -0.020 0.121 0.019 0.023 --- --- --- --- --- --- 

Note: , ,1 1, ,2 2, ,3 3,
ˆ ˆ ˆ ˆ ˆ ˆn P P P P P P

i t i t i t i te f f f     ,   
1, 2, 3,, ,1 ,2 ,3

ˆ ˆ ˆΔ Δ Δ Δ
I I I

n I I I
t t ti t i i ie f f f      . PCA and ICA indicate principal 

and independent component analysis, respectively.  ,

I

j tf  denotes the jth stationary independent source 

and ,
ˆ P

j tf  is the jth level principal component. Others are the same as those in Table 1. 
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Table 3. Out-of-sample prediction of the PC- and IC-based models 
 

PC: , , , , 1,
ˆ( )P P P n P

i t h i t i h h i t it t he e c E e u      , 

IC: , , , , 1,
ˆ( )I I I n I

i t h i t i h h i t it t he e c E e u      , 

i=1,…,N; h=1,…, H, 

Notes: ,i te  is the log nominal exchange rate, and ,
ˆ I

i tE  and ,
ˆ P

i tE  are IC- and PC-based fundamental 

exchange rates constructed with the source number being determined by the criterion of CPV (Jackson, 
1993), 3BIC  and 2pIC  (Bai and Ng, 2002), respectively. PC and IC indicate a PC-based and an IC-based 

model, respectively. The benchmark is the driftless random walk: , 1 , , 1i t i t i te e u   . The numbers in the 

first line of each row under columns 3-6 are the medians of the TU-statistics, and they appear in bold if they 
are less than 1.0. TU is the ratio of the root mean square errors from a model relative to that from the 
driftless random walk. The model is superior to the driftless random walk if the TU-statistic is less than one. 
The CW-statistic examines if the two models have the same mean square prediction errors, and the 
hypothesis of equal accuracy is rejected if the CW-statistic is less than -1.282. There are two numbers in the 
second line of each row for each column under columns 3-6. The first number is the number of counties 
having the TU-statistic (across N) less than 1.0, and the second number, in parentheses, denotes the number 
of currencies for which the CW-statistic rejects the hypothesis of equal forecast accuracy at the 10% level. 
TU  is the percentage of the TU-statistics less than 1.0 over all horizons. 1CW  and 2CW  denote the 
rejection percentages of the CW-statistic over all horizons and over the medium and long horizons, 
respectively. These percentages are boldfaced if they are greater than or equal to 0.5. Early and Long refer 
to the periods 1973-1998 and 1973-2011, respectively.

Sample/ N Model
Median TU

#TU<1 or (CW<-1.282) TU  1CW  2CW

  h=1 4 8 12    

Criterion: CPV
Early/N=17 PC 1.015 

4(2) 
1.017
6(1)

1.036
5(2)

1.158
4(2)

0.28 0.10 0.12

 IC 0.999 
11(0) 

0.991
13(5)

0.950
13(8)

0.965
10(7)

0.69 0.29 0.44

Long /N=9 PC 1.022 
2(0) 

1.094
1(0)

1.192
2(0)

1.309
1(0)

0.17 0.00 0.00

 IC 1.000 
4(0) 

0.986
7(3)

0.956
7(5)

0.946
9(5)

0.75 0.36 0.56

Criterion: 3BIC  
Early/N=17 PC 1.007 

4(1) 
1.047

3(3)
1.078

4(5)
1.146

6(3)
0.25 0.18 0.24

 IC 0.999 
10(1) 

0.994
13(3)

0.956
14(8)

0.964
10(7)

0.69 0.28 0.44

Long /N=9 PC 1.013 
4(1) 

1.054
3(1)

1.089
3(1)

1.126
1(2)

0.31 0.14 0.17

 IC 1.000 
4(2) 

0.991
8(4)

0.955
7(6)

0.941
9(5)

0.78 0.47, 0.61

 
Criterion: 2pIC   

Early/N=17 PC 1.009 
4(1) 

1.042
5(1)

1.070
6(3)

1.141
3(1)

0.26 0.09 0.12

 IC 1.000 
7(0) 

0.999
9(0)

0.976
14(8)

0.976
10(8)

0.59 0.24 0.47

Long /N=9 PC 1.015 
3(0) 

1.051
2(1)

1.059
2(1)

1.103
1(1)

0.22 0.08 0.11

 IC 1.001 
3(2) 

1.002
3(2)

0.974
7(5)

0.951
9(3)

0.61 0.33 0.44
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Table 4. Out-of-sample prediction of fundamental augmented PC- and IC-based models 
 

PC+k: , , , , , , , , , , , , ,
ˆ ( ) ( )P P P n P P

i t h i t i k h k h i t i t k h i k t i t i k t he e c E e z e u          

IC+k: , , , , , , , , , , , , ,
ˆ ( ) ( )I I I n I I

i t h i t i k h k h i t i t k h i k t i t i k t he e c E e z e u         , 

          i=1,…, N; h=1,…,H; k=TR, M, PPP. 
 

Model Median TU
#TU<1 or (CW<-1.282) TU  1CW  2CW

 h=1 4 8 12 

Early/N=17
PC+TR 1.008 

3(2) 
1.042
5(1)

1.066
6(3)

1.134
3(0)

0.25 0.09 0.09

IC+TR 0.999 
12(3) 

0.998
9(0)

0.971
14(8)

0.975
10(8)

0.66 0.28 0.47

PC+M 1.007 
5(2) 

1.032
5(3)

1.055
6(5)

1.058
6(2)

0.32 0.18 0.21

IC+M 0.996 
11(2) 

0.985
14(6)

0.934
15(9)

0.945
12(8)

0.76 0.37 0.50

PC+PPP 1.008 
8(2) 

1.005
8(8)

0.953
10(11)

0.981
9(8)

0.51 0.43 0.56

IC+PPP 0.995 
11(6) 

0.953
12(11)

0.882
11(9)

0.898
9(9)

0.63 0.51 0.53 

Long/N=9
PC+TR 1.014 

3(0) 
1.059
2(1)

1.061
2(1)

1.095
1(1)

0.22 0.08 0.11

IC+TR 1.001 
3(1) 

1.001
4(1)

0.974
7(5)

0.947
9(4)

0.64 0.31 0.50

PC+M 1.011 
1(0) 

1.032
1(1)

1.113
3(1)

1.150
2(1)

0.19 0.08 0.11

IC+M 1.004 
3(3) 

1.014
3(3)

1.047
3(3)

1.025
2(2)

0.31 0.31 0.28

PC+PPP 1.003 
4(1) 

0.991
5(4)

0.962
5(8)

0.969
6(6)

0.55 0.53 0.78

IC+PPP 0.991 
6(5) 

0.980
6(5)

0.934
7(8)

0.916
6(7)

0.69 0.69 0.83

Notes: , ,i TR tz , , ,i M tz and , ,i PPP tz  are fundamental exchange rates measured by the Taylor-rule (TR), 

monetary (M) and purchasing power parity (PPP) fundamentals, respectively. PC+k and IC+k indicate that 
forecasts are constructed based on the kth fundamental augmented PC-based and the kth fundamental 
augmented IC-based models, respectively. The number of sources is determined by 2pIC . Others are the 

same as those in Table 3. 
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Table 5. Out-of-sample forecasts with the five currencies rejecting normality and the 
twelve currencies failing to reject normality in the Early sample 

 
PC: , , , , , ,

ˆ( )P P P n P
i t h i t i h h i t i t i t he e c E e u      ,  

IC: , , , , , ,
ˆ( )I I I n I

i t h i t i h h i t i t i t he e c E e u      , 

PC+k : , , , , , , , , , , , , ,
ˆ( ) ( )P P P n P P

i t h i t i k h k h i t i t k h i k t i t i k t he e c E e z e u         , 

IC+k: , , , , , , , , , , , , ,
ˆ( ) ( )I I I n I I

i t h i t i k h k h i t i t k h i k t i t i k t he e c E e z e u         . 

i=1,…, N; h=1,…,H; k =TR, M, PPP. 
 

Model Median TU
#TU<1 or (CW<-1.282) TU  1CW  2CW

 h=1 4 8 12    

Excluding the five currencies rejecting the normality in the Early sample 
 

Early1/N=12
PC 1.013 1.068 1.084 1.206 0.04 0.02 0.04

0(0) 0(0) 1(1) 1(0)
IC 1.006 1.009 0.995 1.026 0.27 0.15 0.29

0(0) 1(0) 7(4) 5(3)
PC+TR 1.012 1.067 1.089 1.229 0.04 0.00 0.00

0(0) 0(0) 1(0) 1(0)
IC+TR 1.006 1.011 0.993 1.024 0.31 0.13 0.25

1(0) 1(0) 9(3) 4(3)
PC+M 1.012 1.044 1.069 1.070 0.17 0.06 0.13

1(0) 1(0) 3(1) 3(2)
IC+M 1.002 0.993 0.973 1.009 0.46 0.19 0.38

2(0) 7(0) 7(5) 6(4)
PC+PPP 1.010 1.020 1.004 0.997 0.42 0.38 0.50

3(2) 5(4) 6(6) 6(6)
IC+PPP 1.000 0.979 0.971 1.010 0.50 0.40 0.42

4(3) 8(6) 6(6) 6(4) 

Including only the five currencies rejecting the normality in the Early sample 
 

Early2/N=5
PC 1.011 1.021 0.982 1.138 0.35 0.15 0.30

1(0) 2(0) 3(2) 1(1)
IC 0.995 0.999 0.981 1.015 0.55 0.20 0.30

3(1) 3(0) 3(2) 2(1)
PC+TR 1.010 1.017 0.993 1.110 0.30 0.10 0.20

1(0) 1(0) 3(1) 1(1)
IC+TR 0.994 0.995 0.999 1.059 0.50 0.30 0.30

3(2) 3(1) 3(1) 1(2)
PC+M 0.997 0.989 0.980 0.991 0.75 0.55 0.80

3(0) 5(3) 4(4) 3(4)
IC+M 0.983 0.958 0.929 0.988 0.70 0.65 0.60

3(3) 4(4) 4(3) 3(3)
PC+PPP 1.008 1.026 1.005 1.010 0.35 0.45 0.60

1(1) 2(2) 2(3) 2(3)
IC+PPP 0.985 0.943 0.839 0.966 0.65 0.50 0.60

3(1) 3(3) 4(3) 3(3)
Notes: Early1 indicates the panel excluding AUT, ITA, KOR, NOR and SWD from the Early panel; hence, 
its panel size (N) is twelve. Early2 indicates the panel including five countries: AUT, ITA, KOR, NOR and 
SWD. Others are the same as those in Tables 3 and 4. 
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Table 6. The simulation results 
 

DGP: * * * *
, , , , ,1

ˆKI I
i t i t i t ij j t i tj

e E f  


    ,  

          *
,i t  i.i.d.N(0, 2

i ) , 2
i   i.i.d.U(0.9, 1.1), 

             i=1,…,N, t=1,…,T, j=1,…,K, K=1, 2, 3, 
           

                Early/N=17                           Long/N=9             
K＼h 1 4 8 12 1 4 8 12 

1 12.73 11.95 12.09 12.04 7.58 6.86 7.01 7.05 
     

2 14.26 13.33 14.31 13.38 7.43 7.31 7.34 7.35 
     

3 14.86 14.13 14.94 14.16 7.23 7.34 7.22 7.33 

Note: ,î j  is the ith country’s estimated mixing coefficient of the jth independent source and *
,
I

j tf  is the 

jth independent source bootstrapped from the jth estimated independent source, ,
ˆ I

j tf . ‘K’ is the number of 

independent sources, and ‘h’ denotes the forecast horizon. The number of replications in simulation is 200, 
and the number in the table is the average number (across 200) of countries having TU < 1 under different 
forecast horizons. The TU statistic is defined as the ratio of the IC-based RMSE to the PC-based RMSE. 
The IC-based model is better than the PC-based model if the TU statistic is less than one. 
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The Early sample 
               Factor 1                               Factor 2         
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                              The Long sample 
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Figure 1: the plot of independent components (solid line) and principal components 
(broken line) over the Early and Long samples. 

 


